
1 Managing the visibility of #cmdSetup controls
If you want configuration items of your Setup window not to be displayed or not entered by the user,

you can implement three methods to do this:

1. The control selector

2. The tag :enable:

3. The tag :visible:

The control selector lets you manage multiple controls at the same time by hiding the current not

relevant controls. Hidden controls will not be queried (no :read: issued) and this will speed up your

Setup initialization. The assumption is that these controls are not valid or not needed in the current

state of the device. Caution: control variables of the hidden controls are not initialized. Don’t use

them on controls outside the selector control entry where that control is part of.

The tag :enable: will not hide the control but sets it in a disabled state. Contrary to the hiding of the

selector control a disabled control will still issue a :read: command during initialization or when

requested via :update:

The tag :visible: should nog longer be used.

1.1 Using the selector control
The primary function of this control is to hide controls that are not needed for the current state of

the configuration. In this way you can hide non-active device options or non-valid configuration items

for the current state of the device.

The selector can issue a :read: command to get the value for the selector entries, but it can also be

an expression (mostly based on previously set control variables).

All device options that require to an active state switch to be turned off/on are a candidate for the

selector control. Preferred method to switch these options is the buttonsOn control. In this case you

can repeat the read command of the buttonsOn on the selector control to enable the required

#cmdsetup controls. On the ON entry you can specify all controls that need to be visible. In the off

state the name of the selector control will be displayed.

Note: OFF and ON are the values returned by the device. This can also be 0 and 1 or other values.

#cmdSetup buttonsOn Sweep_State Channel_1

:read: C1:SWWV?

:readmath: getElement(getMatch(value,"STATE,[^,]*(,|$)"),1,",")

:write: C1:SWWV STATE,#

:update: Sweep_Settings_visible_in_On_State

:string:

:color: (240,60,0)

CH1_Sweep_Off OFF

CH1_Sweep_On ON

#cmdSetup selector Sweep_Settings_visible_in_On_State Channel_1

:read: C1:SWWV?

:readmath: getElement(getMatch(value,"STATE,[^,]*(,|$)"),1,",")

; selector name will be displayed in OFF state

OFF

ON Channel_1.Sweep_Time Channel_1.Sweep_Start Channel_1.Sweep_Stop

Remarks:

 You need to put a :update: command with the selector name on the buttonOn control to

update the items under the selector control when switching from state,

 The first line with controls will be used for previews and when the value is empty. Seems the

best place to put the entry for the off state, if applicable.

 Don’t use selector controls to switch one optional control. Just use the :enable: function,

 But if you have too many complicated :enable: structures on many controls the use of the

selector is preferred,

 If a control is in one of the entries of the selector, the selector will control the visibility of

this control. Be careful using the page name as control (e.g. Channel.) will put all items on

the page under control of this selector,

 When an empty entry of the selector is selected (e.g. OFF) all controlled command are

hidden and the selector name is displayed in the setup window,

 You can cascade selector controls when needed,

 When using the selector you cannot use the same control name for controls that are

different in function. This can be solved by appending a _ at the end of a control. The

controls State, State_ and State__ show the same name in the setup window, but are

different controls.

Other type of control that frequently can be used for the selector control is the comboboxHot.

Switching between functions of the device may need a different set of parameters to control and

there we can use the selector again.

#cmdSetup comboboxHot Waveform Channel_1

:write: C1:BSWV WVTP,#

:read: C1:BSWV?

:readmath: getElement(value,1,",")

:update: Wave_selector

Sine SINE

Square SQUARE

cmdSetup selector Wave_selector Channel_1

:read: C1:BSWV?

:readmath: getElement(value,1,",")

SINE Channel_1.Frequency Channel_1.Phase

SQUARE Channel_1.Frequency_ Channel_1.Period_Channel_1.Duty

Both can be combined by updating the selector with the buttonsOn and let the selector be controlled

by one of the controls in the selector. This control must be in every selector entry except the off-

state selector entry. In the example it is Channel_1.Modulation_Type.

#cmdSetup buttonsOn Modulation_State Channel_1

:read: C1:MDWV?

:readmath: getElement(value,1,",")

:write: C1:MDWV STATE,#

:update: Modulation_Settings_visible_in_On_State State

:string:

:color: (240,60,0)

CH1_Modulation_Off OFF

CH1_Modulation_On ON

#cmdSetup selector Modulation_Settings_visible_in_On_State Channel_1

:read: C1:MDWV?

:readmath: getElement(value,1,",")=="OFF" ? "OFF" : getElement(value,2,",")

; selector name will be displayed in OFF state

OFF

AM Channel_1.Modulation_Type Channel_1.AM_Source

FM Channel_1.Modulation_Type Channel_1.FM_Source

#cmdSetup comboboxHot Modulation_Type Channel_1

:read: C1:MDWV?

:readmath: getElement(value,2,",")

:write: C1:MDWV #

:update: Modulation_Settings_visible_in_On_State

Amplitude AM

Frequency FM

And finally an example of cascading the selector controls.

#cmdSetup buttonsOn Burst_State Channel_1

:read: C1:BTWV?

:readmath: getElement(getMatch(value,"STATE,[^,]*(,|$)"),1,",")

:write: C1:BTWV STATE,#

:update: Burst_Settings_visible_in_On_State State

:enable: inList(Channel_1.Waveform,"SINE SQUARE RAMP PULS ARB")

:string:

:color: (240,60,0)

CH1_Burst_Off OFF

CH1_Burst_On ON

#cmdSetup selector Burst_Settings_visible_in_On_State Channel_1

:read: C1:BTWV?

:readmath: getElement(getMatch(value,"STATE,[^,]*(,|$)"),1,",")

; selector name will be displayed in OFF state

OFF

ON Channel_1.Burst_Type Channel_1.Burst_Burst_Type_Selector (+other controls)

………other controls

#cmdSetup radio Burst_Type Channel_1

:read: C1:BTWV?

:readmath: getElement(getMatch(value,"GATE_NCYC,[^,]*(,|$)"),1,",")

:readformat: u

:write: C1:BTWV GATE_NCYC,#

:update: Burst_Type_Selector

:string:

N_Cycles NCYC

Gated GATE

#cmdSetup selector Burst_Type_Selector Channel_1

:read: C1:BTWV?

:readmath: getElement(getMatch(value,"GATE_NCYC,[^,]*(,|$)"),1,",")

NCYC Channel_1.Burst_Period Channel_1.Burst_Trigger

GATE Channel_1.Burst_Period_ Channel_1.Burst_Trigger_

1.2 Using :enable: tag
The primary function of this tag is to hide one (or a few) control that is invalid for the current state of

the configuration. Where the selector control gets its input from a issued :read: command, this tag

will switch it’s associated control via the logic state of the expression on the tag, where true equals

on and false off. Some controls will create variables with their name or page-name.control-name if

pages are used, they are: Number, NumberInt, NumberDual (Adds 1 & 2 to the names), buttonsOn,

radio, combobox, comboboxHot. These control variables can be used to control other controls.

Some examples:

:enable: Load==1 (no page present)

:enable: Channel_1.Load_Impedance==100000 (numeric test)

:enable: Channel_1.Load_Impedance==”100000” (string test)

:enable: Channel_1.Load_Impedance==”HZ” (other string test)

:enable: Channel_1.Load_Impedance!=”HZ” (is not test)

:enable: inList(Channel_1.Waveform,"SINE SQUARE RAMP") (test for multiple

strings)

2 Using functions to check device response

A :read: tag receives a response of the device. This can be only a value, one keyword and a value or a

whole set of values with or without keywords. In this paragraph we have a look at some returned

messages (string) and the functions we can use to get the required values of this string.

2.1.1 Scanning the device response for a value
There are multiple way to get the wanted value depending on the format of the response.

Here is a (non-complete) summary:

Response Used functions Result Number

10.345 none 10.345 y

10.345Hz :readformat: u 10.345 y

FRQ, 10.345Hz :readmath: getElement(value,1,",")
:readformat: u

10.345 Y

FRQ 10.345Hz :readmath: getElement(value,1," ")
:readformat: u

10.345 Y

C1:BSWV FRE 10.345Hz :readmath: getElement(value,2," ")
:readformat: u

10.345 Y

C1:BSWV FRE, 10.345Hz getElement(getMatch(value,"FRE,[^,]*(,|$)"),1,",")
:readformat: u

10.345 Y

C1:SWWV STATE,ON :readmath: getElement(value,1,",")
:string:

ON N

Below are some more in-depth examples.

2.1.2 Getting the value from a key,value string response
Key, value strings are commonly used to send multiple values as a response.

Message: C1:BSWV WVTP,SINE,FRQ,100HZ,PERI,0.01S,AMP,2V

2.1.2.1 Function getMatch

This function returns a substring from the received string based on a regex. The most common use is

the search for a keyword and associated value separated by a commas.

The universal form used (will find the key,value in the middle of a string or at the end) is:

getMatch(value,"KEYWORD,[^,]*(,|$)")

Examples:

Message: C1:BSWV WVTP,SINE,FRQ,100HZ,PERI,0.01S,AMP,2V

Function: getMatch(value,"FRE,[^,]*(,|$)")

Result: FRQ,100HZ

Message: C1:BSWV WVTP,SINE,FRQ,100HZ,PERI,0.01S,AMP,2V

Function: getMatch(value,"AMP,[^,]*(,|$)")

Result: AMP,2V

2.1.2.2 Function getElement

This function gets a substring from a string with a specific separator. The separator is specified by a

regex and a number needs to be supplied for the index after splitting the string. Most common

separators are a space or a comma. Index number starts at 0.

Regex for one or more spaces: “[]+”

Examples for comma:

Message: FRQ,100HZ

Function: getElement(value,1,",")

Result: 100HZ

Message: C1:BSWV WVTP,SINE,FRQ,100HZ,PERI,0.01S,AMP,2V

Function: getElement(getMatch(value,"FRE,[^,]*(,|$)"),1,",")

Result: 100HZ

2.1.2.3 Tag :readformat:

Finally we want to separate the real value from the appended unit with the :readformat: tag.

Example:

Message: 100HZ

Function: :readformat: u

Result: 100

2.1.2.4 Combined example

Most key,value response can be processed with this universal solution:

Message: C1:BSWV WVTP,SINE,FRQ,100HZ,PERI,0.01S,AMP,2V

Function: :readmath: getElement(getMatch(value,"FRE,[^,]*(,|$)"),1,",")

 :readformat: u

Result: 100

2.1.2.5 Tag :string:

Some device responses are default treated as a numeric value. Therefor the :string: tag is required

when using text responses. Known commands are buttonsOn, radio and checkbox.

This will work with numbers:

#cmdSetup buttonsOn State Channel_1

:read: C1:BWWV?

:write: C1:BWWV #

CH1_Off 0

CH1_On 1

But this requires the :string: tag:

#cmdSetup buttonsOn Sweep_State Channel_1

:read: C1:SWWV?

:readmath: getElement(getMatch(value,"STATE,[^,]*(,|$)"),1,",")

:write: C1:SWWV STATE,#

:string:

CH1_Sweep_Off OFF

CH1_Sweep_On ON

Note: buttonOn will turn the indicator on based on the response on the SECOND entry. In above cases

1 and ON.

2.1.3 What to do if a value is not always present?
With the selector control you want to be able to switch the function/option, but in off state the

required value is no longer present in the message.

2.1.3.1 The if function

This is where we can use the if function so we can check the value of two keys.

Message-1: C1:MDWV STATE,ON,AM

Message-2: C1:MDWV STATE,OFF

Function: :readmath: getElement(value,1,",")=="OFF" ? "OFF" : getElement(value,2,",")

 :readformat: u

Result Message-1: AM

Result Message-2: OFF

2.1.3.2 The match function

Match can check if a substring is part of the returned response by e.g. trying to find the keyword via a

regex search “.*KEYWORD.*”

Message-1: COUP TRACE,OFF,FCOUP,ON,PCOUP,OFF,ACOUP,OFF,FDEV,0HZ

Message-2: COUP TRACE,ON

Function: :readmath: match(value,".*FCOUP.*") ? getvalue : "OFF"

Result Message-1: ON

Result Message-2: OFF

getvalue = getElement(getMatch(value,"FCOUP,[^,]*(,|$)"),1,",")

2.1.4 What to do if I need multiple values?
 For the control multi a number of values separated by a space is needed. This can be done by using

getMatchGroup. In this case we use a regex again to find the key and strip the units from the values.

Finally the values are concatenated in one string separated by spaces.

Message: C1:HARM HARMSTATE,ON, HARMORDER,4,HARMAMP,1.264911064V,HARMDBC,-10dBc

Function: :readmath: getMatchGroup(value,"HARMDBC,(.*?)dBc",1) + " " +

getMatchGroup(value,"HARMAMP,(.*?)V",1)

Result Message: -10 1.264911064

