
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/312526319

Ethernet Communication in Microcontroller Systems

Technical Report · January 2017

DOI: 10.13140/RG.2.2.27380.35206

CITATIONS

0
READS

2,069

1 author:

Some of the authors of this publication are also working on these related projects:

Potentiostat - Galvanostat - Supercapacitor/Battery Tester View project

ESUP-CAP - High power-high energy electrochemical supercapacitor for hybrid electric vehicles View project

Davor Antonic

Antonic Ltd.

15 PUBLICATIONS 28 CITATIONS

SEE PROFILE

All content following this page was uploaded by Davor Antonic on 19 January 2017.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/312526319_Ethernet_Communication_in_Microcontroller_Systems?enrichId=rgreq-e0218f44de60b874bb857a3f5e566505-XXX&enrichSource=Y292ZXJQYWdlOzMxMjUyNjMxOTtBUzo0NTIyMTIzMzQ4Mjk1NjhAMTQ4NDgyNzIzMTAwMg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/312526319_Ethernet_Communication_in_Microcontroller_Systems?enrichId=rgreq-e0218f44de60b874bb857a3f5e566505-XXX&enrichSource=Y292ZXJQYWdlOzMxMjUyNjMxOTtBUzo0NTIyMTIzMzQ4Mjk1NjhAMTQ4NDgyNzIzMTAwMg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Potentiostat-Galvanostat-Supercapacitor-Battery-Tester?enrichId=rgreq-e0218f44de60b874bb857a3f5e566505-XXX&enrichSource=Y292ZXJQYWdlOzMxMjUyNjMxOTtBUzo0NTIyMTIzMzQ4Mjk1NjhAMTQ4NDgyNzIzMTAwMg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/ESUP-CAP-High-power-high-energy-electrochemical-supercapacitor-for-hybrid-electric-vehicles?enrichId=rgreq-e0218f44de60b874bb857a3f5e566505-XXX&enrichSource=Y292ZXJQYWdlOzMxMjUyNjMxOTtBUzo0NTIyMTIzMzQ4Mjk1NjhAMTQ4NDgyNzIzMTAwMg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-e0218f44de60b874bb857a3f5e566505-XXX&enrichSource=Y292ZXJQYWdlOzMxMjUyNjMxOTtBUzo0NTIyMTIzMzQ4Mjk1NjhAMTQ4NDgyNzIzMTAwMg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Davor_Antonic?enrichId=rgreq-e0218f44de60b874bb857a3f5e566505-XXX&enrichSource=Y292ZXJQYWdlOzMxMjUyNjMxOTtBUzo0NTIyMTIzMzQ4Mjk1NjhAMTQ4NDgyNzIzMTAwMg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Davor_Antonic?enrichId=rgreq-e0218f44de60b874bb857a3f5e566505-XXX&enrichSource=Y292ZXJQYWdlOzMxMjUyNjMxOTtBUzo0NTIyMTIzMzQ4Mjk1NjhAMTQ4NDgyNzIzMTAwMg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Davor_Antonic?enrichId=rgreq-e0218f44de60b874bb857a3f5e566505-XXX&enrichSource=Y292ZXJQYWdlOzMxMjUyNjMxOTtBUzo0NTIyMTIzMzQ4Mjk1NjhAMTQ4NDgyNzIzMTAwMg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Davor_Antonic?enrichId=rgreq-e0218f44de60b874bb857a3f5e566505-XXX&enrichSource=Y292ZXJQYWdlOzMxMjUyNjMxOTtBUzo0NTIyMTIzMzQ4Mjk1NjhAMTQ4NDgyNzIzMTAwMg%3D%3D&el=1_x_10&_esc=publicationCoverPdf

1

Ethernet Communication in Microcontroller

Systems1

Davor Antonic
Faculty of Chemical Engineering and Technology January 2017

davor@antonic.hr

Abstract – As a communication protocol for low cost microcontroller systems Ethernet is becoming superior

alternative to traditional communication protocols as RS-232, RC-485, or CAN. High speed, long range and

moderate cost, associated with availability of dedicated chips that implements Physical and Data Link layers

make Ethernet the protocol of choice for many applications. This paper describes development of Ethernet

interface for the Atmel AVR XMEGA microcontroller, based on Microchip’s ENCx24J600 Ethernet Controller.

Hardware implementation, software functions supporting ENCx24J600 and implementation of UDP protocol are

explained in detail.

Table of Contents

1. INTRODUCTION ...2

2. ENCx24J600 ETHERNET CONTROLLER ..3

2.1. Device overview ...3

2.2. Serial Peripheral Interface (SPI) ..3

2.2.1. Physical implementation..3

2.2.2. SPI instruction set ..3

2.3. Memory organization ...4

2.3.1. Special function registers ...5

2.3.2. SRAM Buffer ..5

2.4. Initialization ...6

2.5. Receiving packets ...6

2.1. Transmitting packets ..6

2.2. Receive Filters ..7

2.3. Interrupts ...7

2.4. DMA Controller ..8

3. UDP protocol ..8

3.1. Ethernet frame ...8

3.2. IPv4 packet ...9

3.3. UDP datagram .. 10

3.4. Address resolution ... 10

4. Ethernet module for XMEGA A3BU Xplained ... 12

5. UDP protocol implementation at AVR XMEGA microcontroller .. 13

5.1. SPI protocol implementation .. 13

5.2. ENCx24J600 functions .. 14

1 This work has been fully supported by Croatian Science Foundation under the project IP-2013-11-8825

mailto:davor@antonic.hr

2

5.2.1. Implemented ENCx24J600 SPI Instructions .. 14

5.2.2. Initialization ... 15

5.2.3. Reading UDP datagram .. 16

5.2.4. Preparing and sending UDP datagram.. 17

5.2.5. Checksum calculation .. 17

6. Sending and receiving UDP datagrams on PC computer .. 18

7. Conclusion .. 20

8. Literature .. 21

1. INTRODUCTION

Traditionally in low cost microcontroller systems simple communication protocols like RS-232 or RS-

485 are used. Although simple to implement they are characterized by low speed, short distance (for

RS-232) and lack of communication and synchronization protocols. CAN is more advanced, but more

complicated to implement. It’s nondestructive bitwise arbitration protocol imposes hard limit on

speed-length product. E.g. maximum CAN speed at 40 m link is 1Mbit/s.

Ethernet offers numerous advantages. Data rate of 100 Mbit/s or more is easily achieved, distance is

practically unlimited, and standardization and widespread support makes possible communication

with a broad spectrum of systems and devices. Implementation complexity could be overcome by

using specialized Ethernet controller chip, which implements Physical and Data Link layers of OSI

model.

This paper deals with Microchip’s ENCx24J600 Ethernet Controller (1) with integrated MAC and

10/100Base-T PHY. It provides connection to host microcontroller through 14 Mbit/s SPI interface or

high throughput parallel interface. ENCx24J600 Ethernet Controller is implemented on Atmel AVR

XMEGA-A3BU Xplained evaluation microcontroller system. Schematic, implementation of various

ENCX24J600 functions and UDP protocol implementation are explained in detail.

Using complex libraries like (2) masks implementation details and allows the programmer to focus to

the project goals. On the other hand, approaching hardware at the level of registers and individual

bits gains deep insight into the chip functionality, which leads to more efficient and smaller code.

Sometimes it will be simpler to implement required functions than to dig through complex library of

which only few percent of provided functionality is needed.

Provided code and explanations are supplement to the ENCx24J600 Data Sheet, intended to clarify

ENCx24J600 Ethernet controller features and programming. They are free to use without restrictions,

as stated in the associated code files (3).

3

2. ENCx24J600 ETHERNET CONTROLLER

2.1. Device overview

The ENCx24J600 (1) is stand-alone Ethernet controller with Serial Peripheral Interface (SPI) or flexible

parallel interface for communication with host microcontroller. Maximum data rate for SPI is 14

Mbit/s and for parallel interface in demultiplexed, 16-bit mode up to 160 Mbit/s. The only difference

between the ENC424J600 (44 pin) and ENC624J600 (64 pin) devices are the number of parallel

interface options they support. SPI functionality is the same for both devices, so ENC424J600 is

preferable choice for SPI interface.

ENCx24J600 implements all of the IEEE 802.3 specifications applicable to 10Base-T and 100Base-TX

Ethernet. Many optional features, such as auto-negotiation are supported. ENCx24J600 incorporate

eleven software configurable receive filters to discard unwanted frames. Each device is

preprogrammed with unique nonvolatile MAC address. During initialization it is copied to writable

registers, which means that user application could assign different MAC address if required.

24-Kbyte on-chip RAM buffer, organized as 12K 16-bit words is available for transmit and receive

buffer and for general purpose storage if desired. Internal 16-bit DMA controller supports memory

copy operation and hardware checksum calculations.

ENCx24J600 incorporates three different cryptographic security engines, which perform encryptions,

decryptions and mathematical computations most commonly used for network security functions.

The engines implemented are Modular Exponentiation, MD5 and SHA-1 Hashing and AES.

2.2. Serial Peripheral Interface (SPI)

SPI is a synchronous serial communication interface used for short distance high speed

communication (4). It is the master-slave architecture with single master. SPI requires three lines for

communication: SCLK (Serial Clock), MOSI (Master Output - Slave Input) and MISO (Master Input -

Slave Output). Additionally, for each slave device master should provide active low SS (Slave Select)

signal. Master always initiates write cycle, which generates SCLK and outputs data bit-by-bit at MOSI

line. Slave device should simultaneously put data sending to master at MISO line, synchronous with

SCLK. There are four SPI modes that differ in SCLK polarity and phase in relation to data lines.

2.2.1. Physical implementation

Corresponding SPI lines on ENCx24J600 are named SCK, SO, SI and CS. The SPI port operates as a SPI

slave port in Mode 0,0 (SCK is idle in a logic low state and data is clocked in on rising clock edges).

The active low CS pin must be asserted while any operation is performed and return to inactive state

when finished.

2.2.2. SPI instruction set

The ENCx24J600 SPI interface supports 47 different instructions for accessing various ENCx24J600

registers. Although full functionality can be achieved with only six instructions, using additional

instructions will improve system performance. In described implementation following twelve SPI

instructions are implemented:

4

Mnemonic Length (bytes) Description

SETETHRST 1 Issues System Reset by setting ETHRST (ECON2<4>)

SETEIE 1 Enable Ethernet Interrupts by setting INT (ESTAT<15>)

CLREIE 1 Disable Ethernet Interrupts by clearing INT (ESTAT<15>)

DMACKSUM 1 Configures and starts DMA checksum operation (sets ECON1<5:2>
to 1000)

SETTXRTS 1 Sends an Ethernet packet by setting TXRTS (ECON1<1>)

RCRU 4 Read Control Register Unbanked – reads content of addressed 16-
bit Special Function Register (SFR). Byte 1 – opcode, Byte 2 –
address, Byte 3 – returned low byte, Byte 4 – returned high byte

WCRU 4 Write Control Register Unbanked – writes to addressed 16-bit
Special Function Register (SFR). Byte 1 – opcode, Byte 2 – address,
Byte 3 – low byte, Byte 4 – high byte

BFSU(*) 4 Bit Field Set Unbanked – Bytes 3 and 4 contains mask used to set
corresponding bit in addressed SFR. If mask bit is ‘1’, corresponding
SFR bit will be set, if it is ‘0’, SFR bit remains unchanged.

BFCU(*) 4 Bit Field Clear Unbanked – Bytes 3 and 4 contains mask used to clear
corresponding bit in addressed SFR. If mask bit is ‘1’, corresponding
SFR bit will be cleared, if it is ‘0’, SFR bit remains unchanged.

WGPWRPT 3 Write General Purpose Buffer Write Pointer (EGPWRPT).

WGPDATA N Writes data to General Purpose Buffer. Byte is written indirectly to
address pointed by EGPWRPT and EGPWRPT is incremented.

RRXDATA N Reads data from Circular RX FIFO Buffer. Byte is fetched indirectly
from address pointed by ERXDATA and ERXDATA is incremented.

(*) It is advised to use BFS and BFC instructions to modify control registers, instead of reading register

into host controller, modify it and write it back to ENCx24J600 (RCR followed by WCR). Such operation

is not atomic, meaning that ENCx24J600 may change content of the register between read and write-

back operations. BFS and BFC instructions are atomic, requires half of SPI cycles and results in simpler

code.

2.3. Memory organization

All memory in ENCx24J600 is implemented as volatile RAM, functionally divided into four areas:

 Special Function Registers (SFRs)

 PHY Special Function Registers

 Cryptographic Data Memory

 SRAM Buffer

The PHY SFRs configure, control and provide status information for the PHY module. They are located

inside the PHY module so they are not directly accessible through the I/O interface. They can

normally be left at default values.

The cryptography data memory is used to store key and data used by Cryptographic Security Engines.

It can only be accessed through the DMA module.

Memory mapping depends on the selected I/O interface. For the SPI interface there are three

memory address spaces:

 The SFR area – directly accessible 160 bytes linear memory space

5

 The main memory area – linear, byte-addressable space of 32 Kbytes, where the first 24

Kbytes (0000h – 5FFFh) is implemented as the SRAM buffer. Through the SPI interface buffer

can be accessed only indirectly, using several SFRs as memory pointers and virtual data

window registers. Area between 7800h and 7C4Fh is assigned to Cryptographic Data and the

rest is unimplemented.

 The PHY register area – linear, word-addressable memory space of 32 words accessible by

the MIIM interface.

2.3.1. Special function registers

All ENCx24J600 functions are configured through 58 Special Function Registers (SFR’s). For faster

access they are organized in four banks, but it is also possible to address them directly, which

requires additional SPI cycle. E.g. WCR banked instruction requires three bytes instead of four bytes

WCRB, because the register banked address is inside the op-code byte. If wrong bank is active,

additional one-byte Bank Select instruction is required. SFR’s are detail explained in (1), c. 3.2.

2.3.2. SRAM Buffer

The SRAM buffer is a 12K word x 16-bit memory used for receive and transmit packet buffering and

general purpose storage by the host microcontroller. Depending on application requirements size of

receive buffer and general purpose / transmit buffer can be adjusted through the ERXST register. The

default value of ERXST is 5340h, which allocates 21,312 bytes to general purpose buffer and 3,264

bytes to the RX buffer, which is sufficient to store two maximum length Ethernet frames

General Purpose
Buffer

0000h

ERXST-1

Circular RX FIFO
Buffer

ERXST

5FFFh

Since there is no dedicated transmit buffer, general purpose buffer is used to prepare packets to be

transmitted. Host application should gradually build the packet with available data and request

transmission when the packet is fully built. It is also possible to modify and (re)transmit packet

directly from the receive buffer. The receive buffer is organized as circular FIFO buffer. After the

memory at address 5FFFh is written to, the hardware will automatically wrap around and write the

next byte of received data to the ERXST address.

For the SPI interface indirect access to the SRAM buffer is the only method available. ENCx24J600

provides three pairs of Read/Write pointers and three associated 8-bit data registers through which

the SRAM data is read or written. Following the read/write operation, the appropriate pointer is

automatically incremented in hardware. All pointers can be used to access any address within the

6

SRAM buffer. They differ from each other based on their address wrapping behavior. Indirect access

and circular buffer configuration and behavior are explained in detail in (1), c. 3.5.5.

2.4. Initialization

Before using ENCx24J600 it must be initialized. SFR’s contains meaningful default values, which

considerably simplifies initialization procedure. In associate code ENCx24J600 is initialized as follows:

Wait for ENC SPI interface to initialize

Wait for stable clock

Reset ENCx24J600 and wait at least 25µs for the reset to take place

and the SPI interface to begin functioning again

Confirm that the System Reset took place (check that EUDAST returned

to default value of 0000h)

Wait at least 256 us for PHY initialization

Enable Ethernet, LED stretching, automatic MAC Address transmission,

transmit and receive logic

Initialize 'NextPacketPointer' variable to ERXST

Disable reception of broadcast (ff-ff-ff-ff-ff-ff) frames (only frames

having correct MAC address will be accepted)
(*)

Enable reception

Enable packet received interrupt

 (*) This option should be disabled for the implementation of the ARP protocol

2.5. Receiving packets

Incoming Ethernet frames are written to the circular receive buffer. Upon frame reception

ENCx24J600 increments the Packet Counter bits, PKTCNT (ESTAT<7:0>), which indicates the number

of pending frames.

Procedure of reading arrived packets from the RX buffer:

Set Receive Buffer Read Pointer (ERXRDPT) to the value of

‘NextPacketPointer’ variable

Read first two bytes of the packet, which are the address of the next

packet and write them to ‘NextPacketPointer’ variable

Read Receive Status Vector (next six bytes), extract the length of the

frame

Read Ethernet (and higher level protocol) header

Read data

Update RXTAIL pointer to NextPacketPointer – 2

Decrement PKTCNT by asserting ECON1.PKTDEC

Above procedure is intended to be executed on Packet Received Interrupt. If polling is used instead

of the interrupt, procedure should wait for packet reception (for the condition PKTCNT>0).

2.1. Transmitting packets

The packet to be transmitted is defined by the Transmit Data Start Pointer (ETXST), and the Transmit

Buffer Length Pointer (ETXLEN). The ETXLEN bytes from the address indicated by ETXST will be

transmitted. If the end of the general purpose buffer is encountered, the operation will wrap around

7

to the beginning of the general purpose buffer space (0000h). ENCx24J600 could be configured to

automatically insert the source MAC address into the transmitted byte stream. The value of ETXLEN

only indicates the number of bytes to read from memory, which means that the ENCx24J600 will

automatically insert padding bytes to satisfy minimum packet length constraint, calculate and

append the CRC field and optionally insert the source MAC address.

Procedure for preparing and transmitting the packet:

Set General Purpose Buffer Write Pointer (EGPWRPT) to the address

where the packet will be constructed, set transmission start

address (ETXST) to the same value

Set number of bytes into ETXLEN

Construct Ethernet (and higher level protocol) header

Write header and data to General Purpose Buffer through the EGPDATA

register

Wait for the transmit subsystem to be ready (ongoing transmission

completed)
(*)

Start transmission

 (*) Optionally Transmit Done Interrupt could be used. Since ENCx24J600 at 100Mbit/s will

transmit data faster than the host microcontroller could prepare the next packet that is usually not

benefitial.

2.2. Receive Filters

To minimize the number of frames that the host controller must process, ENCx24J600 incorporates

eleven different software configurable receive filters to discard unwanted frames. Default settings

are to accept only Broadcast frames and frames specifically addressed to the local MAC address.

Invalid frames and those destined for other nodes will be automatically rejected. Additionally, in

initialization procedure described in 2.4, Broadcast Collection Filter is disabled, accepting only frames

specifically addressed to the local MAC address, thus restricting incoming traffic to absolute

minimum.

2.3. Interrupts

The ENCx24J600 implements ten interrupt sources:

 Cryptographic Security Engines operations completion (four interrupts)

 PHY Link Status Change

 RX Packet Pending

 DMA Operation Completed

 Transmit Done

 Transmit Abort

 Receive Abort

 Packet Counter Full

If particular interrupt is disabled, host controller can check the condition by reading corresponding

flag in Ethernet Interrupt Flag Register (EIR). To enable particular interrupt, corresponding bit in

Ethernet Interrupt Enable Register (EIE) should be set, as well as the INT Global Interrupt Enable bit.

8

2.4. DMA Controller

ENCx24J600 incorporates a Direct Memory Access (DMA) controller, performing following functions:

 Copying data within the SRAM buffer

 Copying data between the SRAM buffer and the Cryptographic Engines data buffer

 Calculating a 16-bit checksum over a block of data, compatible with the checksum used in

standard protocols, such as IP, UDP and TCP.

In described implementation DMA controller is used to calculate the checksum of data part of the

UDP frame:

Set EDMAST to the start address

Set EDMALEN to the length of the input data

Execute DMACKSUM SPI command (clear DMACPY (ECON1<4>) to prevent a

copy operation, clear DMANOCS (ECON1<2>) to select a checksum

calculation, clear DMACSSD (ECON1<3>) to use the default seed of

0000h, set DMAST to initiate the operation)

. . . // programmatically calculate checksum of UDP pseudoheader

Wait for DMA to finish data checksum calculation (DMAST (ECON1<5>)

cleared)

Read checksum from EDMACS

Combine with programmatically calculated checksum of UDP pseudoheader

3. UDP protocol

User datagram protocol (UDP) (5) uses a simple connectionless transmission model. It is defined

inside Data segment of underlying protocol, e.g. IPv4. UDP provides source and destination port

numbers for addressing different functions at the source and destination of the datagram and

checksum for checking data integrity. Additionally, underlying protocol defines source and

destination IP addresses and base Ethernet protocol defines MAC addresses.

Although UDP provides no guarantee of datagram delivery, ordering, or duplicate protection, it is

suitable for purposes where error checking and correction is either not necessary or is performed in

the application. Since there is no need for sending confirmation packets, exceptionally high data

rates are possible, especially if connected systems are at the same local network segment.

Encapsulation of UDP datagram into lower layer packets is presented in the following figure:

Ethernet Ethernet Header Payload CRC

IPv4 IPv4 Header Data

UDP UDP Header Data

3.1. Ethernet frame

Ethernet frame (6) is transported within the Ethernet packet at the physical layer, which starts with

the seven bytes Preamble and Start Frame Delimiter byte, and ends with twelve bytes Interpacket

9

Gap. It defines source and destination through the MAC addresses and IP addresses are defined in

higher level protocols.

Field Name Size
(bytes)

Description

MAC destination 6 Destination MAC address

MAC source 6 Source MAC address. Could be inserted automatically by the
ENCx24J600.

Ethertype / Length 2 In IEEE 802.3 it is size of payload in bytes and in Ethernet II type
frame it defines encapsulated protocol. Values of 1500 and
below mean that it is used to indicate the size of the payload,
while values of 1536 and above indicate that it is used as an
EtherType, to signal which protocol is encapsulated in the
payload of the frame.

Payload 46-1500 If contains less than 46 bytes could be automatically padded
with zeroes by the ENCx24J600.

Frame check sequence 4 Cyclic redundancy check (CRC), could be calculated and
appended automatically by the ENCx24J600. For incoming
packets ENCx24J600 will check CRC and could automatically
reject invalid frames.

3.2. IPv4 packet

Ethernet frame having Ethertype 0x0800 encapsulate Internet Protocol version 4 packet (7). IPv4

packet is fully defined inside Payload of Ethernet frame. Contains header and data section and has no

data checksum or any other footer after the data section. Typically the link layer encapsulates IP

packets in frames with a CRC footer that detects most errors, and higher layer checksum detects

most other errors.

Field Name Size
(bytes)

Description

Version and IHL 1 Version (bit 4-7) is a protocol version field. For IPv4 it is equal
to 4.

Internet Header Length (bit 0-3) contains number of 32-bit
words in the header. Since an IPv4 header may contain
a variable number of options, this field specifies the
size of the header, which also coincides with the offset
to the data. It is five if Options are not used.

DSCP and ECN 1 Differentiated Services Code Point (bit 2-7) defines network
traffic type. If not used should be 0.

Explicit Congestion Notification (bit 0-1) allows end-to-end
notification of network congestion without dropping
packets. If not used should be 0.

Total Length 2 Defines the entire packet size, including header and data, in
bytes.

Identification 2 Identification field is primarily used for uniquely identifying the
group of fragments of single IP datagram.

Flags and Fragment
Offset

2 Flags (bit 13-15) are used to control or identify fragments.
Fragment Offset (bit 0-12) is measured in units of eight-byte

blocks. It is 13 bits long and specifies the offset of a

10

particular fragment relative to the beginning of the
original unfragmented IP datagram.

Time To Live 1 Limit of a datagram's lifetime. It is specified in seconds, but in
practice the field is used as a hop count.

Protocol 1 Defines the higher level protocol used in the data portion of
the IP datagram. E.g. UDP protocol number is 11h. Standard
Internet Protocol Numbers could be found in (8).

Header Checksum 2 It is used for error-checking of the header, calculated as the
16-bit one's complement of the one's complement sum of all
16-bit words in the header (9), (10).

Source IP Address 4 IPv4 address of the sender of the packet.

Destination IP Address 4 IPv4 address of the receiver of the packet.

Options variable Usually not used.

Data variable Content is interpreted based on the value of the Protocol field.

3.3. UDP datagram

UDP datagram structure is defined in (5).

Field Name Size
(bytes)

Description

Source Port 2 Identifies the sender's port. It should be zero if not used.

Destination Port 2 Identifies the receiver's port.

Length 2 The length in bytes of the UDP header and UDP data.

Checksum 2 May be used for error-checking of the header and data. It
should be zero if not used. It is calculated the same way as the
IPv4 Header Checksum.

Data variable

3.4. Address resolution

To use a higher level protocol like UDP it is necessary to establish mapping of Internet layer

addresses into link layer addresses (IP to MAC address). General solution is to implement Address

Resolution Protocol (ARP), but for static configuration, e.g. where known microcontroller modules

are statically connected to the PC computer, ARP table can be created manually.

To establish communication between Windows PC and microcontroller board, following steps are

required:

1. Assign IP addresses to PC and microcontroller

To assign IP address to PC Ethernet adapter, in ‘IPv4 protocol properties’ enter IP address. In

sample code it is assumed that IP address 192.168.1.10 is assigned to PC Ethernet adapter.

IP address of microcontroller system is assigned programmatically. In sample code it is assumed

that IP address 192.168.1.11 is assigned to the microcontroller.

11

2. Determine PC Ethernet adapter MAC address

To be able to send packets to the PC, microcontroller should know the PC Ethernet adapter

MAC address. To determine it, open ‘Command Prompt’ and issue command ‘ipconfig

/all’.

MAC address of the PC Ethernet adapter is 00-23-7D-00-8A-08h.

3. Determine microcontroller’s Ethernet controller MAC address

ENCx24J600 Ethernet Controller has unique MAC address. To determine it, send packet using

ENC_SendUDPFrame function (5.2.4) and inspect it with Wireshark network analyzer (11):

Locate UDP datagram sent from microcontroller (192.168.1.11) to PC (192.168.1.10). In this

case MAC address of microcontroller’s Ethernet controller is 54-10-EC-08-3D-D7h, where first

three bytes identifies the Microchip Technology Inc. as a producer of ENCx24J600.

12

4. Assign microcontroller’s MAC address to IP address

To be able to communicate with microcontroller through the IP address it is necessary to define

static ARP entry that links IP to MAC address. Open ‘Command prompt’ in administrator mode

(right click and select ‘Run as administrator’) and issue command:

netsh interface ipv4 add neighbors 9 192.168.1.11 54-10-ec-08-3d-d7

That will link IP address 192.168.1.11 to MAC address 54-10-EC-08-3D-D7 for interface number

‘9’ (interface number could be found in ‘Interface List’ section displayed by route print

command). To check that the entry is successfully added issue the arp –a command:

Added entry will lasts until the next system restart, so it is necessary to execute the netsh

command after each system restart, e.g. through the batch file.

4. Ethernet module for XMEGA A3BU Xplained

The Atmel AVR XMEGA®-A3BU Xplained evaluation kit (12) is a hardware platform based on the

Atmel ATxmega256A3BU 8-bit microcontroller. ENCx24J600 Ethernet controller is easily

interfaced to the Xplained kit requiring four lines at PORT C SPI interface available at connector

J1. Ethernet Signal Pins and External Magnetics are connected according to specifications in

ENCx24J600 Data Sheet (1).

Ethernet module is designed as a daughterboard to the Xplained kit, connected to J1 connector.

Schematic and PCB are designed in KiCad (13) . KiCad project (schematic and PCB) is available for

free download at (3).

13

5. UDP protocol implementation at AVR XMEGA microcontroller

5.1. SPI protocol implementation

Header file SPI.h defines bit masks for SPI interface pins and three commands: SPI_WAIT that waits

for current byte transmission to finish, and SPI_CS_ON and SPI_CS_OFF for asserting and clearing the

Slave Select line (ENCx24J600 CS line, active low).

#define SPI_SS_bm 0x10 // bit mask for the SS pin
#define SPI_MOSI_bm 0x20 // bit mask for the MOSI pin
#define SPI_MISO_bm 0x40 // bit mask for the MISO pin
#define SPI_SCK_bm 0x80 // bit mask for the SCK pin

#define SPI_WAIT while(!(SPIC.STATUS & SPI_IF_bm)) // wait for assertion of IF (transmit/

// receive completed)
#define SPI_CS_ON PORTC.OUTCLR = SPI_SS_bm // assert SS
#define SPI_CS_OFF PORTC.OUTSET = SPI_SS_bm // deassert SS

SPI.c contains function SPIC_Init() that configures microcontroller Port C, enables SPI master mode 0

and set SPI clock frequency to 8MHz. Transmission of one byte takes only 1µs, so polling through

SPI_WAIT instruction is used instead of interrupt. Since interrupts are enabled, CPU could service an

interrupt routine while waiting for completion of SPI transfer, e.g. to fetch data from the A/D

converter at specified intervals.

void SPIC_Init()
{
 // configure SS, MOSI and SCK as output.
 PORTC.DIR = SPI_SS_bm | SPI_MOSI_bm | SPI_SCK_bm;
 SPI_CS_OFF;

 // SPI_C - Master mode 00, Clk_per / 4 (8MHz)
 SPIC.CTRL= SPI_PRESCALER_DIV4_gc | SPI_ENABLE_bm | SPI_MASTER_bm | SPI_MODE_0_gc;
}

To write one byte of data to SPI slave the code should write to SPI DATA register. That starts SPI clock

generation and the hardware shifts the eight bits into the selected slave synchronous to the clock

signal. After shifting one byte, the SPI clock generator stops and the SPI interrupt flag is set (SPI_IF bit

14

in SPI STATUS register). Interrupt Flag is automatically cleared by hardware when executing the

corresponding interrupt vector. If polling is used, to clear the Interrupt Flag, software should first

read the STATUS register and then access the DATA register. Therefore at the end of SPI instruction it

is necessary to perform the dummy read of DATA register. That is not required if the next SPI cycle

follows immediately, because writing to the DATA register will have the same effect.

 SPIC.DATA = data;
 SPI_WAIT;
 (dummy = SPIC.DATA;)

Each SPI cycle is essentially bidirectional, which means that for reading data from slave, master

should initiate write cycle. Since slave will ignore the data, some dummy value (e.g. zero) is normally

used. By writing to SPI DATA register master starts clock generation and slave uses the clock to assert

data to the MISO line. Master shifts data synchronously to the clock into input shift register from

where they are transferred into the DATA register upon cycle completion.

 SPIC.DATA = DUMMY;
 SPI_WAIT;
 data = SPIC.DATA;

5.2. ENCx24J600 functions

5.2.1. Implemented ENCx24J600 SPI Instructions

List of implemented SPI instructions are presented in 2.2.2. They are implemented through one to N

SPI cycles, where first cycle is always the instruction op-code. Slave Select (ENCx24J600 CS) is

asserted during all SPI cycles belonging to single instruction.

As an example of single byte instruction System Reset (SETETHRST) instruction is presented. To

execute the instruction at ENCx24J600 it is sufficient to send the instruction op-code, which is CAh.

// ENCx24J600 System reset
void ENC_SETETHRST()
{
 uint8_t dummy;

 SPI_CS_ON;

 SPIC.DATA = 0xca; // op code
 SPI_WAIT;
 dummy = SPIC.DATA;

 SPI_CS_OFF;
}

Example of four-byte instruction is Read Control Register Unbanked (RCRU), consisting of two write

cycles to transfer op-code (20h) and Special Function Register’s address, followed by two read cycles

for fetching low and high byte of addressed register.

// Read Control Register Unbanked
// Fetches content of 16-bit ENCx24J600 register. Common registers are defined
// in ENCx24J600.h
uint16_t ENC_RCRU(uint8_t addr)
{
 uint8_t dummy, hi, lo;

 SPI_CS_ON;

 SPIC.DATA = 0x20; // op code

15

 SPI_WAIT;
 dummy = SPIC.DATA;

 SPIC.DATA = addr; // register address
 SPI_WAIT;
 dummy = SPIC.DATA;

 SPIC.DATA = DUMMY;
 SPI_WAIT;
 lo = SPIC.DATA;

 SPIC.DATA = DUMMY;
 SPI_WAIT;
 hi = SPIC.DATA;

 SPI_CS_OFF;

 return lo + (hi<<8);
}

Example of the N-byte instruction is Write EGPDATA (WGPDATA). Instruction op-code (2Ah) is

followed by arbitrary number of bytes written to consecutive locations in General Purpose Buffer

addressed by General Purpose Buffer Write Pointer (EGPWRPT) register. After sending last byte

master must inactivate the CS line. To avoid additional level of data buffering, N-byte instructions

WGPDATA and RRXDATA (Read from Receive Buffer Data Register) are not implemented as separate

functions. They are incorporated into functions for receiving and transmitting UDP datagram, to

interpret and construct the datagram on the fly.

5.2.2. Initialization

Initialization procedure ENC_Init() is described in 2.4.

// Initialize ENCx24J600 according to procedure provided in (1), chapter 8
// Assumes SPI interface on Port C, interrupt line connected to Pin 0. SPI should be initialized
// before calling ENC_Init (function SPIC_Init in SPI.c)
int8_t ENC_Init()
{
 // Wait for ENC SPI interface to initialize
 do
 {
 ENC_WCRU(EUDAST,0x1234);
 } while (ENC_RCRU(EUDAST) != 0x1234);

 // Wait for stable clock
 while (!(ENC_RCRU(ESTAT) & ENC_ESTAT_CLKRDY_bm));

 // Reset
 ENC_SETETHRST();
 _delay_us(50);

 // Check that EUDAST returned to default value
 if (ENC_RCRU(EUDAST) != 0x0000) return ERR;

 // wait at least 256 us for PHY initialization
 _delay_us(500);

 // Enable Ethernet, LED stretching, automatic MAC Address transmission, TX and RX logic
 ENC_WCRU(ECON2,0xe000);

 // Initialize 'NextPacketPointer' to ERXST
 NextPacketPointer = ENC_RCRU(ERXST);

 // Disable reception of broadcast (ff-ff-ff-ff-ff-ff) frames - only frames having correct MAC

// address will be accepted
 ENC_BFCU(ERXFCON, ENC_ERXFCON_BCEN_bm);

 // Enable reception

16

 ENC_BFSU(ECON1, ENC_ECON1_RXEN_bm);

 // Interrupt control - PORT C, Pin 0
 PORTC.PIN0CTRL = PORT_OPC_PULLUP_gc | PORT_ISC_FALLING_gc; // falling edge
 PORTC.INT0MASK = PIN0_bm;
 PORTC.INTCTRL = PORT_INT0LVL_MED_gc; // medium priority

 PMIC.CTRL |= PMIC_MEDLVLEN_bm; // enable medium level interrupts

 // Enable ENC interrupts
 ENC_SETEIE();

 return OK;
}

5.2.3. Reading UDP datagram

ENCx24J600 is configured to generate interrupt upon reception of incoming frame. Since INT line is

connected to PORT C.0, interrupt service routine should be placed in ISR(PORTC_INT0_vect) function.

ISR(PORTC_INT0_vect)
{
 ENC_CLREIE(); // disable ENC interrupts (INT line goes inactive)

 // read packet
 if(ENC_RdUDPFrame(SourceAddr, DestAddr, &SourcePort, &DestPort, &Len, &data) == OK)
 { // if it is correct UDP frame, send it back
 ENC_SendUDPFrame(uC_IPAddr, PC_IPAddr, PC_MACAddr, 11000, 11000, 0, Len, data);
 free(data); // free allocated memory
 }

 ENC_SETEIE(); // enable ENC interrupts (if interrupt is pending INT line goes active again)
}

As advised in (1), c. 13, in interrupt service routine host controller should clear the Global Interrupt

Enable bit, INTIE (EIE<15>). This causes the interrupt pin to return to the non-asserted (high) state. At

the end of interrupt service routine host controller should set the INTIE bit to re-enable interrupts. If

new interrupt request is pending, new falling edge will occur on the INT line, which will be recognized

by the host controller interrupt system.

ENC_RdUDPFrame function is defined as follows:

int8_t ENC_RdUDPFrame(uint8_t *SourceAddr, uint8_t *DestAddr, uint16_t *SourcePort, uint16_t *DestPort,
 uint16_t *Len, uint8_t **Data)

Function parameters:

Name Definition Description

SourceAddr uint8_t SourceAddr[4] Source IP address. Each element contains one of four IP
address segments.

DestAddr uint8_t DestAddr[4] Destination IP address.

SourcePort uint16_t* SourcePort Source port number.

DestPort uint16_t* DestPort Destination port number.

Len uint16_t* Len Number of Data bytes.

Data uint8_t** Data Address of pointer to Data array. Array is dynamically
allocated, so it is necessary to call free(Data) after the
data has been processed.

Function returns completion status as defined in ENCx24J600.h.

17

Function ENC_RdUDPFrame follows procedure defined in 2.5 and sequentially reads and parses

Ethernet frame, IPv4 packet and UDP datagram as described in chapters 3.1, 3.2 and 3.3.

5.2.4. Preparing and sending UDP datagram

Before sending, datagram should be fully constructed inside the General Purpose Buffer. Function

ENC_SendUDPFrame constructs Ethernet frame, IPv4 packet and UDP datagram as described in

chapters 3.1, 3.2 and 3.3. It also calculates both IPv4 header checksum and UDP datagram checksum.

ENC_SendUDPFrame function is defined as follows:

void ENC_SendUDPFrame(uint8_t *SourceIPAddr, uint8_t *DestIPAddr, uint8_t *DestMACAddr,
uint16_t SourcePort, uint16_t DestPort, uint16_t BuffAddr, uint16_t Len, uint8_t *data)

 Function parameters:

Name Definition Description

SourceIPAddr uint8_t SourceAddr[4] Source IP address. Each element contains one of four IP
address segments.

DestIPAddr uint8_t DestAddr[4] Destination IP address.

DestMACAddr uint8_t DestMACAddr[6] Destination MAC address.

SourcePort uint16_t SourcePort Source port number. Should be zero if not used.

DestPort uint16_t DestPort Destination port number.

BuffAddr uint16_t Start address in General Purpose Buffer from where the
frame will be constructed(*).

Len uint16_t Len Number of Data bytes.

Data uint8_t *Data Address of Data array.

(*) Application should define at least two different areas in General Purpose Buffer, to be able to

construct the next frame while ENCx24J600 is sending the previous one.

5.2.5. Checksum calculation

Although checksum field is defined as optional in RFC 768 Internet Standard, PC computer running

operating system such as MS Windows will reject datagrams not having a valid checksum, so the

ENC_SendUDPFrame function implements UDP checksum calculation. UDP checksum is not checked

for incoming datagrams. Faulty frames will be rejected by ENCx24J600 and between PC computer

and microcontroller on local network segment there is no other possible source of UDP data

corruption.

UDP checksum is calculated for UDP pseudoheader, which in addition to the UDP header contains

some fields from the IPv4 header, and the UDP data. Since UDP pseudoheader is not continuous in

ENCx24J600 General Purpose Buffer, it’s checksum is calculated in code. In parallel, UDP data

checksum is calculated by ENCx24J600 DMA, which is capable of processing 100Mbytes/s. After

completion of DMA checksum calculation partial checksums are unified and returned. Algorithm for

checksum calculation is explained in detail in (10).

// Calculate UDP checksum
// UDP pseudoheader checksum is calculated inside function and data checksum is calculated using
ENCx24J600
// DMA controller. Algorithm is described in (1) and (2)
// Parameters:
// Header - UDP pseudoheader
// HLen - pseudoheader length

18

// DataStartAddr - start address of data in general purpose buffer
// DLen - data length in bytes
uint16_t GenerateUDPChecksum(uint8_t *Header, uint16_t HLen, uint16_t DataStartAddr, uint16_t DLen)
{
 volatile uint32_t sum = 0;
 uint8_t carry;
 volatile uint16_t headSum, dataSum, checksum;

 if (DLen > 0) // if data field is empty skip calculation od data checksum
 {
 // Initialize DMA calculation of data checksum:
 // Set EDMAST to the start address
 ENC_WCRU(EDMAST, DataStartAddr);
 // Set EDMALEN to the length of the input data
 ENC_WCRU(EDMALEN, DLen);
 // Clear DMACPY (ECON1<4>) to prevent a copy operation.
 // Clear DMANOCS (ECON1<2>) to select a checksum calculation.
 // Clear DMACSSD (ECON1<3>) to use the default seed of 0000h.
 // Set DMAST to initiate the operation
 ENC_DMACKSUM();
 }

 // Calculate Header checksum. ENC simultaneously calculates data checksum.
 for(uint8_t i = 0; i < HLen; i+=2)
 {
 sum += ((uint16_t)(Header[i])<<8) + Header[i+1];
 }
 // add carry
 while (((carry = (sum & 0xffff0000) >> 16)) != 0)
 {
 sum &= 0x0000ffff;
 sum += carry;
 }
 headSum = sum;

 if (DLen > 0)
 {
 // Wait for ENC DMA to finish data checksum calculation
 while (ENC_RCRU(ECON1) & ENC_ECON1_DMAST_bm);

 // Read data checksum
 dataSum = ENC_RCRU(EDMACS); // LO and HI byte swapped !?
 uint8_t lo = dataSum & 0x00ff;
 uint8_t hi = dataSum >> 8;
 dataSum = ~((lo<<8) + hi);
 }
 else dataSum = 0;

 // Combine header and data checksum
 sum = (uint32_t)headSum + dataSum; // 32 bit sum, otherwise carry will be discarded
 // add carry
 while (((carry = (sum & 0xffff0000) >> 16)) != 0)
 {
 sum &= 0x0000ffff;
 sum += carry;
 }
 sum = ~sum;
 checksum = sum != 0 ? sum : 0xffff; // positive zero should be converted to negative zero

 return checksum;
}

6. Sending and receiving UDP datagrams on PC computer

Sample application is developed under MS Windows operating system and .NET framework (version

4.5), using Visual Studio 2015 development environment and C# programming language. Application

defines UDP datagrams destination and source as IPEndPoint objects. For the target microcontroller

it contains IP address of 192.168.1.11 and Port 11000, and for receiving datagrams from any source

19

IP address is set to IPAddress.Any (defined as 0.0.0.0) and the port is also 11000. The main function

starts function UDPListen, defined to execute asynchronously using thread from the thread pool, and

then each second displays number of transmitted/received datagrams.

UDPListen initialize content of UDP datagram and in a loop sends the datagram and waits for the

reception.

using System;
using System.Diagnostics;
using System.Net;
using System.Net.Sockets;
using System.Text;
using System.Threading;
using System.Threading.Tasks;

public class UDPListener
{
 private const int TotalPackets = 100000;

 private const int UDPPort = 11000;

 // sending to target microcontroller
 private static IPEndPoint microConEP = new IPEndPoint(IPAddress.Parse("192.168.1.11"), UDPPort);
 // receiveing UDP packet from any source
 private static IPEndPoint groupEP = new IPEndPoint(IPAddress.Any, UDPPort);

 private static int noPackets = 0;
 private static bool finished = false;

 private static void UDPListen()
 {
 Task.Run(async () =>
 {
 using (var udpClient = new UdpClient(UDPPort))
 {
 byte[] sendBytes = new byte[512];
 for (int i = 0; i < 512; i++) sendBytes[i] = (byte)(i % 256);

 // Send and receive 100,000 datagrams. If sent or received datagram is corrupted
 // application will lock.
 for (int i = 0; i < TotalPackets; i++)
 { // send datagram and wait for reception
 udpClient.Send(sendBytes, sendBytes.Length, microConEP);
 UdpReceiveResult receivedResults = await udpClient.ReceiveAsync();

 noPackets++;
 }

 finished = true;
 }
 });
 }

 public static void Main()
 {
 noPackets = 0;

 UDPListen();
 Console.WriteLine("Started ...");

 Stopwatch sw = new Stopwatch();

 sw.Start();
 while (!finished)
 {
 Thread.Sleep(1000);
 Console.WriteLine("Transceived: {0} datagrams", noPackets);
 }

20

 sw.Stop();
 Console.WriteLine("\nRound-trip time per datagram: {0:F3} ms",
 (double)sw.ElapsedMilliseconds / TotalPackets);
 Console.ReadLine();
 }
}

The application calculates the average time needed for the datagram to reach the target

microcontroller and return. In this case it is 2.6 milliseconds.

Total length of UDP datagram having 512 bytes payload is 554 bytes. Transferring 554 bytes on 100

Mbit/s link takes approximately 45µs. To transfer that data to / from microcontroller through the 8

Mbit/s SPI interface takes additional 554µs, which gives 600µs, or total round-trip time of 1.2ms.

Difference to measured 2.6ms comes from the PC side, probably due to Windows OS latency.

It is interesting to analyze the case where the microcontroller continuously sends UDP frames to the

PC. Since the time to prepare and send the frame is 600µs for 512 bytes of useful data, maximal

theoretical throughput is 853 Kbyte/s, or 8.5 Mbit/s. That utilizes the 100 Mbit/s link less than 10%,

which leaves space to connect up to ten microcontroller modules communicating at maximum

speed. There will be no lost datagrams at the PC side, because Ethernet controller has sufficient

buffering. It is easy to test it by slightly modify the test applications at PC and microcontroller.

7. Conclusion

Described Ethernet communication subsystem is developed for the Potentiostat - Galvanostat -

Supercapacitor/Battery Tester (14), which consists of eight independent microcontroller channels

connected to the single board PC computer. The main reason for choosing Ethernet was to support

future system upgradability, e.g. Ethernet will easily support modules with 1Msamples/s acquisition

rates, which will be impossible for any other communication protocol.

Although system is developed for short-range closed-system communication, with minor

modifications of provided code it is easy to develop application for sending data to the other

continent. There is enough memory in a system (large ENC buffer and 16Kbyte XMEGA RAM) to

implement complex protocols like ARP and TCP. Data security could be implemented through the

ENCx24J600 encryption engines.

I would like to hear about the developments based on provided code and schematic, bugs you find,

and questions you may have, so feel free to contact me.

21

8. Literature

1. ENC424J600/624J600 Data Sheet - Stand-Alone 10/100 Ethernet Controller with SPI or Parallel

Interface. s.l. : Microchip, 2010.

2. Microchip's TCP/IP Stacks. Microchip. [Online] Microchip. [Cited: January 12, 2017.]

http://www.microchip.com/SWLibraryWeb/product.aspx?product=TCPIPSTACK.

3. Antonic, Davor. ENCx24J600 Ethernet module. Antonic. [Online] January 19, 2017.

http://antonic.hr/Projects/Potentiostat/Ethernet%20module/.

4. Serial Peripheral Interface Bus. Wikipedia. [Online] December 28, 2016. [Cited: January 11, 2017.]

https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus.

5. User Datagram Protocol. Wikipedia. [Online] December 5, 2016. [Cited: December 23, 2016.]

https://en.wikipedia.org/wiki/User_Datagram_Protocol.

6. Ethernet frame. Wikipedia. [Online] December 18, 2016. [Cited: December 23, 2016.]

https://en.wikipedia.org/wiki/Ethernet_frame.

7. IPv4. Wikipedia. [Online] December 18, 2016. [Cited: December 23, 2016.]

https://en.wikipedia.org/wiki/IPv4.

8. List of IP protocol numbers. Wikipedia. [Online] November 27, 2016. [Cited: December 24, 2016.]

https://en.wikipedia.org/wiki/List_of_IP_protocol_numbers.

9. IPv4 header checksum. Wikipedia. [Online] March 23, 2016. [Cited: December 24, 2016.]

https://en.wikipedia.org/wiki/IPv4_header_checksum.

10. Braden, R., Borman, D. and Partridge, C. RFC 1071 - Computing the Internet checksum. faqs.org.

[Online] September 1988. http://www.faqs.org/rfcs/rfc1071.html.

11. Wireshark. [Online] [Cited: November 15, 2016.] https://www.wireshark.org/.

12. XMEGA-A3BU Xplained. Atmel. [Online] Microchip - Atmel. [Cited: January 15, 2017.]

http://www.atmel.com/tools/XMEGA-A3BUXPLAINED.aspx.

13. KiCad EDA - A Cross Platform and Open Source Electronics Design Automation Suite. KiCad EDA.

[Online] [Cited: January 15, 2017.]

14. Antonic, Davor. Potentiostat - Galvanostat - Supercapacitor/Battery Tester. Antonic. [Online]

November 15, 2016. http://antonic.hr/Projects/Potentiostat/.

15. Horvat, Goran, Sostaric, Damir and Balkic, Zoran. Cost-effective Ethernet Communication for

Low Cost Microcontroller Architecture. International Journal of Electrical and Computer Engineering

Systems. 2012, Vol. 3, 1.

View publication statsView publication stats

https://www.researchgate.net/publication/312526319

