
1

Intelligent Power Allocator – Tuning Guide

2

 Temperature is proportional to power consumption

 Power is consumed by the various components in the SoC

 Controlling device power consumption can be used to control temperature

 Intelligently allocating power should maximise performance

What is IPA?
Concept

3

 Proportional Integral Derivative (PID) Controller

 Inputs

 Configuration Parameters

 Temperature

 Requested Power

 Outputs power grants

 Integrates with the Linux Thermal sub-system

What is IPA?
Components - Power allocator thermal governor

4

 Implement device power model

 ‘big’, ‘LITTLE’, ‘GPU’, etc., are devices

 Can restrict device power consumption

 Translate power <-> performance cap

 Meaning of performance is device dependent

 Frequency for cpufreq and devfreq cooling devices

 Could be charging current for battery or brightness for LCD

 Need to support power extensions API to work with power allocator governor

 requested_power, state2power, power2state

 Without these, it’s a legacy cooling device that works with other governors

 Implementation already available for

 cpu cooling

 devfreq cooling

What is IPA?
Components - Cooling devices

5

Algorithm - Overview

power

allocator

Perf

metrics

CPU

P
o
w

e
r m

o
d
e
l

Request Power

Estimate

Perf

request

Maximum

Power

Granted Performance

Perf

metrics

GPU

P
o
w

e
r m

o
d
e
l

Request Power

Estimate

Perf

request

Maximum

Power

Granted Performance

Perf

metrics

…

P
o
w

e
r m

o
d
e
l

Request Power

Estimate

Perf

request

Maximum

Power

Granted Performance

Config

Temp.

Monitor

Policy

Governor performs two tasks:

1. Keeps system within thermal

envelope

 Proactive power budget via closed loop

control

 Exploits thermal headroom

2. Dynamic power allocation per

device

 Performance demand & power models

 Power divided based on what each device

requested. Anything left over is distributed

among the devices, up to their maximum.

PID

Power

arbitration

6

 PID controller estimates available thermal headroom (power budget) using previous and

current temperatures

 Assumes the controller is driven at uniform time intervals

 Error e = control temperature – current temperature

 estimated_power = k_p * e + k_i * ∑e + k_d * d/dt (e)

 output = sustainable_power + estimated_power

 Output is allocated to requesting devices based on their power requests

 Cooling device translate power grant to performance caps

Algorithm

7

 Proportional

 k_pu – when temperature is under control temperature, e > 0

 k_po – when temperature is over control temperature, e < 0

 Integral k_i

 Only used when e < integral_cutoff

 Integral_cutoff is 0 by default

 Derivative k_d

 Currently unused

PID Parameters

8

Implementing IPA on your platform

9

 Ensure kernel has support for power allocator thermal governor

 Available in

 Linux v4.2+

 Linaro LSK 3.10

 Linaro LSK 3.18

 Chrome OS 3.14 (in-progress)

 Chrome OS 3.18

 Operating Points (OPPs) are used for DVFS

 cpufreq

 devfreq

Setup
Prerequisites

10

 https://git.linaro.org/landing-teams/working/arm/kernel-release.git

 lsk-3.18-armlt (use ‘lsk-3.18-armlt-20151001’ or later tag)

 lsk-3.10-armlt-juno (choose ‘lsk-3.10-armlt-juno-20150424’ or later tag)

 Contains IPA + GTS integrated with Juno port

 Includes example power cooling device implementations

 Includes devfreq based integration of GPU (Mali Midgard)

 Includes Juno porting

Linaro Stable Kernels (LSK) for IPA evaluation

https://git.linaro.org/landing-teams/working/arm/kernel-release.git
https://git.linaro.org/landing-teams/working/arm/kernel-release.git
https://git.linaro.org/landing-teams/working/arm/kernel-release.git
https://git.linaro.org/landing-teams/working/arm/kernel-release.git
https://git.linaro.org/landing-teams/working/arm/kernel-release.git
https://git.linaro.org/landing-teams/working/arm/kernel-release.git
https://git.linaro.org/landing-teams/working/arm/kernel-release.git
https://git.linaro.org/landing-teams/working/arm/kernel-release.git

11

 cpu cooling for CPUs

 devfreq cooling for GPUs

 Provide dynamic power coefficient

 API call

 device tree?

 Used to calculate dynamic power coefficient

 Pdyn = dynamic-power-coefficient * V2 * f

 If significant, static power consumption can be provided via callback

 Recommend to initially concentrate on dynamic power model

Setup
Cooling devices

12

 Static leakage power consumption depends on a number of factors

=> needs subroutine to calculate

 Time the circuit spends in each 'power state‘ (e.g. ON, OFF, ‘retention’)

 Power managed regions

 Temperature

 Voltage

 Process (e.g. slow to fast – possibly varies on specific chips – bins etc)

 Type, number and size of transistors in both the logic gates and any RAM elements included.

(e.g. LVt vs. HVt transistors)

 Note: OS awareness of factors affecting static power can vary, so the static model is

likely to be platform specific

CPU Power Cooling Device
Static Power

13

 Juno model is simple

 Number of CPUs ON

 Temperature

 Voltage

 Cache leakage if cluster ON

Example - Juno platform static power function
/* voltage in uV */
static int get_static_power(cpumask_t *cpumask, int interval,
 unsigned long u_volt, u32 *static_power)
{
 unsigned long temperature, t_scale, v_scale;
 u32 cpu_coeff;
 int nr_cpus = cpumask_weight(cpumask);
 enum cluster_type cluster =
 topology_physical_package_id(cpumask_any(cpumask));

 if (!scpi_temp_sensor.tzd)
 return -ENODEV;

 cpu_coeff = cluster_data[cluster].static_coeff;

 /* temperature in mC */
 temperature = scpi_temp_sensor.tzd->temperature / 1000;

 t_scale = get_temperature_scale(temperature);
 v_scale = get_voltage_scale(u_volt);

 *static_power = nr_cpus * (cpu_coeff * t_scale * v_scale) / 1000000;

 if (nr_cpus) {
 u32 cache_coeff = cluster_data[cluster].cache_static_coeff;

 /* cache leakage */
 *static_power += (cache_coeff * v_scale * t_scale) / 1000000;
 }

 return 0;
}

 IPA doesn't currently track the

residency of the CPUs in the

different idle states and account for

the static power accordingly

14

 Pass a function pointer that follows the ‘get_static_t’ prototype:

 int plat_get_static(cpumask_t *cpumask, int interval, unsigned long voltage,

 u32 *power);

 `cpumask` a mask of the cpus involved in the calculation,

 `interval` is the last period (usually the power allocator period)

 `voltage` the voltage at which they are operating (in microvolts – uV)

 `power` output variable, the function should write the static power there

 If ‘plat_static_func’ is NULL when registering the power cpu cooling device, static

power is considered to be negligible for this platform and only dynamic power is

considered.

CPU Power Cooling Device
Static Power - registering

15

 The platform specific callback can then use any combination of tables and/or equations

to calculate the static power. [this can include platform or device/bin-specific process

grade data if available]

 Note: the significance of static power for CPUs in comparison to dynamic power is

highly dependent on implementation. Given the potential complexity in implementation,

the importance and accuracy of its inclusion when using cpu cooling devices should be

assessed on a case by cases basis.

 Juno we use static power calculation

 Exynos (HKMG process) we don’t use static power

CPU Power Cooling Device
Static Power - calculation

16

 The Mali power cooling device is supported in the r5p0 version of the DDK for

Midgard GPUs

 Uses devfreq

 Assumes GPU is a large block of logic that all runs at specified voltage/frequency

 drivers/gpu/arm/midgard/mali_kbase_devfreq.c

 Being ported to Utgard as well

Mali GPU Power Cooling Device

17

 Setup thermal zone with appropriate sensor

 Representative sensor (such as SoC sensor or skin sensor) or a combination of device sensors

 Provide sustainable power

 Device tree

 Thermal zone parameters

 Enable CONFIG_THERMAL_GOV_POWER_ALLOCATOR

 Set policy to power allocator. Can be done via

 Compile time default, CONFIG_THERMAL_DEFAULT_GOV_POWER_ALLOCATOR

 Setup in userspace at boot time by writing ‘power_alloator’ to policy node in thermal zone

 Setup two passive trip points

 first trip point is “switch on” temperature

 Second trip point is “control” temperature

 Bind cooling devices to “control” trip point

Setup
Thermal zone

18

 Upstream version of IPA is implemented as a new governor, called ‘power allocator.’

Setup
CONFIG ENTRIES

CONFIG_THERMAL_GOV_POWER_ALLOCATOR

Enables power allocator governor

CONFIG_THERMAL_DEFAULT_GOV_POWER_ALLOCATOR Makes power allocator the default governor

CONFIG_DEVFREQ_THERMAL Enables thermal management for devfreq devices

(used by Mali Thermal driver)

CONFIG_MALI_DEVFREQ Enabled devfreq for Mali

CONFIG_CPU_THERMAL Cpu cooling device

CONFIG_DEVFREQ_THERMAL Devfreq cooling device

CONFIG_SCPI_THERMAL Enables the Juno Platform thermal integration

CONFIG_PM_OPP Enable Operating Performance Point (OPP) library

CONFIG_DEBUG_FS Recommended during tuning for /d files

CONFIG_THERMAL_WRITABLE_TRIPS Change trip points from sysfs, useful for tuning

Power allocator

specific configs

Other useful

generic configs

Juno specific

19

 Registering thermal_zone_device with estimate of the max sustainable power (in mW).

Use ‘thermal_zone_params’ that have a ‘sustainable_power’. e.g.

pass ‘tz_params’ as the 5th parameter to ‘thermal_zone_device_register()’

 Other parameters (k_po, k_pu,…) can be passed as thermal_zone_params

 Trip points can be either active or passive

 "switch on" - temperature above which the governor control loop starts operating

 "desired temperature" - PID target temperature

 Bind() op of the thermal zone can now include the weight of the cooling device

No DT registering thermal_zone and trip points

static const struct thermal_zone_params tz_params = {
 .sustainable_power = 3500,
};

20

Power allocator

2 passive trip points

trip-point@0

trip-point@1

DT registering thermal_zone and trip points
 thermal-zones {
 skin {
 polling-delay = <1000>;
 polling-delay-passive = <100>;
 sustainable-power = <2500>;

 thermal-sensors = <&scpi_sensor0 3>;

 trips {
 threshold: trip-point@0 {
 temperature = <55000>;
 hysteresis = <1000>;
 type = "passive";
 };
 target: trip-point@1 {
 temperature = <65000>;
 hysteresis = <1000>;
 type = "passive";
 };
 };

 cooling-maps {
 map0 {
 trip = <&target>;
 cooling-device = <&cluster0 0 4>;
 contribution = <1024>;
 };
 map1 {
 trip = <&target>;
 cooling-device = <&cluster1 0 4>;
 contribution = <2048>;
 };
 map2 {
 trip = <&target>;
 cooling-device = <&gpu 0 4>;
 contribution = <1024>;
 };
 };
 };
 };

Currently only trip-points, sustainable-power and

weights can be specified in DT

(ARM looking at adding support for the other

parameters when no chance of further change)

When using DT, boot happens with defaults and

userspace can change it by writing to sysfs files.

Switch_on

55degC

Target temp

65degC

21

struct element DT name sysfs (writeable)

switch_on temperature trip-point@0 trip_point_0_temp Temperature above which IPA starts operating

(first passive trip point – trip 0)

desired_temperature trip-point@1 trip_point_1_temp Target temperature

(last passive trip point – trip 1)

weight contribution cdevX_weight Weight for the cooling device

sustainable_power sustainable-power sustainable_power Max sustainable power

k_po [future] k_po Proportional term constant during temperature overshoot

periods

k_pu [future] k_pu Proportional term constant during temperature

undershoot periods

k_i [future] k_i PID loop's integral term constant (compensates for long-

term drift)

When the temperature error is below ‘integral_cutoff ’,

errors are accumulated in the integral term

k_d [future] k_d PID loop's derivative term constant (typically 0)

integral_cutoff [future] integral_cutoff Typically 0 so cutoff not used

Setup
Porting parameters

sysfs location: /sys/class/thermal/thermal_zoneX/:

22

 Cooling devices

 # of cooling_device* nodes in /sys/class/thermal match configuration

 Thermal zones

 # of thermal_zone* nodes in /sys/class/thermal match configuration

 “cat temp” in thermal_zone to check if sensor reports reasonable temperature (in mC)

 Value of sustainable_power in thermal_zone matches configuration

 Check trip point temperatures in trip_point_*_temp nodes

 Iinks to bound cooling device

 Weights associated with cooling devices

 Ensure cooling devices are bound to “control” trip point

Setup
Validation

23

Tuning

24

 Identify workloads

 Should include single as well as multiple device loads

Workloads

25

 Bias power allocation among cooling devices in a thermal zone

 CPU vs GPU

 Can express relative efficiency among similar cooling devices

 E.g., big.LITTLE

 TODO formula that equalises ‘big’ to ‘LITTLE’, or goes even further to bias towards ‘LITTLE’

 For mobile, we suggest setting GPU weight equal to ‘LITTLE’

 Bias power allocation to the GPU

 Found to give good performance for mobile workloads

 Only a suggestion, different usecases may benefit from alternate biasing

Weights

26

 A mechanism to bias the allocation amongst cooling devices

 When cooling devices request power, that request is multiplied by the weight

 Power-efficient devices should have higher weights

 Recommendation for typical big.LITTLE SoC:

 Favors little cpu when limiting CPU’s

 Will change when EAS/IPA integrated

Weights – used to prioritize cooling

Weight /

‘contribution’

big cpu 1024

little cpu 2048

GPU 1024

27

 Run workload

 Initial conditions are consistent across runs

 Capture ‘thermal*’ trace events

 workload automation makes this easy

 Generate report using tuning flow template

Methodology

28

 trace-cmd

 git clone git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/trace-cmd.git –b trace-cmd-v2.6

 cd trace-cmd

 make && sudo make install

 Workload automation

 sudo pip install wlauto[all]

 TRAPpy

 sudo pip install trappy[notebook]

 Tuning flow

Tooling

29

 Captures kernel trace in an in-memory buffer

 Dumped to file at the end of the run

 Sample trace -
kworker/7:2-4443 [007] 2107.527795: thermal_temperature: thermal_zone=exynos-therm id=0 temp_prev=73242

temp=72997

kworker/7:2-4443 [007] 2107.527895: thermal_power_cpu_get_power: cpus=000000f0 freq=800000 load={0 0 0 0}

dynamic_power=0 static_power=0

kworker/7:2-4443 [007] 2107.527916: thermal_power_cpu_get_power: cpus=0000000f freq=1500000 load={16 52 5 24}

dynamic_power=249 static_power=0

kworker/7:2-4443 [007] 2107.527920: thermal_power_allocator_pid: thermal_zone_id=0 err=3892 err_integral=0 p=5321 i=0

d=0 output=7821

kworker/7:2-4443 [007] 2107.527960: thermal_power_cpu_limit: cpus=000000f0 freq=1900000 cdev_state=0 power=4165

kworker/7:2-4443 [007] 2107.527970: thermal_power_cpu_limit: cpus=0000000f freq=1600000 cdev_state=0 power=1100

kworker/7:2-4443 [007] 2107.527977: thermal_power_allocator: thermal_zone_id=0 req_power={2555 0 996}

total_req_power=3551 granted_power={2555 4165 1100} total_granted_power=7820 power_range=7821

max_allocatable_power=10283 current_temperature=73108 delta_temperature=3892

Kernel Trace

30

 To configure tracing in WA add the following to your agenda:

 instrumentation: [trace-cmd]

 trace_events: [‘thermal*’]

 If you want to run trace-cmd manually do:

 trace-cmd –e “thermal*”

 The thermal framework ones are all prefixed with “thermal_” and the power allocator ones are

prefixed with “thermal_power_allocator_” so “thermal*” captures all of them.

 Also visible in debugfs: /sys/kernel/debug/tracing/events

Tracing in WA

31

Running workloads

 An example of a Workload Automation

agenda for Juno can be seen on the right

hand side

 The notebook template will be

distributed with the IPA Tuning Flow

(not yet done)

 For more documentation on WA see

https://pythonhosted.org/wlauto/

 Run the agenda with

wa run /path/to/agenda.yaml

config:

 device: juno

 device_config:

 adb_name: 10.2.131.84:5555

 instrumentation: [fps, trace-cmd]

 result_processors: [ipynb_exporter]

 trace_events: ['thermal*']

 ipynb_exporter:

 notebook_template: /path/to/template.ipynb

 convert_to_pdf: True

 show_pdf: True

global:

 iterations: 1

workloads:

 - name: antutu

 params:

 times: 5

https://pythonhosted.org/wlauto/
https://pythonhosted.org/wlauto/

32

IPA Tuning flow (1)

The first graph is the temperature graph. The yellow dashed line is the control temperature, the temperature

we’re aiming for. The blue line is the current temperature.

33

 The Utilization plot shows the load of each of the power allocator cooling devices: big,

LITTLE and GPU. Normalized utilization is 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 ∗ 𝑓𝑟𝑒𝑞 𝑚𝑎𝑥𝑓𝑟𝑒𝑞 .

IPA Tuning flow (2)

34

IPA Tuning flow (3)

 Allfreqs plots show the current

frequency (in) and the frequency

granted by the power allocator

governor (out)

35

 The PID plot shows each component of the PID algorithm and its contribution to the

output (the power granted by IPA).

 It’s recommended to have the output (blue line) dominated by the “p” component, with

“i” component doing minor corrections.

IPA Tuning flow (4)

36

 The input power plot shows how much power each device consumes as seen by the

power allocator governor. Weight is not taken into account (see next slide).

IPA Tuning flow (5)

37

 The weighted input power is what the governor uses to make its allocating decisions.

For the plot below, the weights for big/LITTLE/GPU were 768/4096/1024, that’s why the

LITTLE appears to ask for so much power.

IPA Tuning flow (6)

38

 The output of the PID (“output” in the PID plot) is divided amongst the cooling devices.

 The output power plot shows how much power the governor granted to each device.

 In the example below we see that in the beginning, when there’s thermal headroom, A15 and GPU get

plenty of power. As the temperature approaches the control temperature, they are constrained. The A7

gets its maximum power throughout the run as it’s the most power efficient CPU. The GPU gets more

power than the A15, as it’s a GPU intensive workload.

IPA Tuning flow (7)

39

 The frequency histograms show the same data as the allfreqs plots but as histograms.

IPA Tuning flow (8)

40

 The temperature histogram shows the same information as the previous temperature

plot but as a histogram.

 It allows you to see the spread of temperatures and how well tuned the solution is.

 Note that for some benchmarks that have parts that are not CPU or GPU intensive

(like AnTuTu), it’s not possible (or desirable) to have the device always at control

temperature.

IPA Tuning flow (9)

41

 Rate of temperature rise (from ambient)

 Too gentle – not enough power

 Performance being capped below control?

 Too fast – leading to unacceptable overshoot

 Duration of high frequency / performance above control?

 k_pu and sustainable power

 Overshoot above control

 Brief period of overshoot can give turbo like behaviour

 Check when all devices loaded – is the overshoot acceptable?

 Affected by k_po, k_i

 Time for temperature to return to control temperature once crossed

 Does it take too long?

 k_i

Things to observe
Temperature…

42

 Temperature not controlled with all devices at lowest power

 Control temperature too low?

 Other means of reducing power control required

 Hotplug

 Turn off shaders for GPU

 Controlling other heat generating devices

Things to observe
Temperature

43

 Unweighted request follows expected workload pattern

 Output power decreases above control temperature

 Allocation of power follows weighted power requests

Things to observe
Power

44

 Linux kernel level documentation:

 Documentation/thermal/power_allocator.txt

 Documentation/thermal/cpu-cooling-api.txt

 Collaboration with Linaro in PMWG

 Consulting with ARM support ‘landing team’

Other support & documentation

https://git.linaro.org/landing-teams/working/arm/kernel-release.git/blob/932dd335cbf1a55e268b7d6c055db8f70cdbf7ca:/Documentation/thermal/power_allocator.txt
https://git.linaro.org/landing-teams/working/arm/kernel-release.git/blob/932dd335cbf1a55e268b7d6c055db8f70cdbf7ca:/Documentation/thermal/power_allocator.txt

45

 Device vs SoC vs skin temperature control

 Device thermal zone to prevent crossing junction temperatures

 Use combination (max?) of sensors for SoC, if representative sensor not available

 Looking into adding support to Linux

 Skin temperature can be used to drive the PID loop as well

 Sensor resolution and accuracy

 Linux thermal framework in milliCelsius

 Higher resolution allows finer grained control of power

 Lower resolution results in jumps in TDP estimate with corresponding bursty temperature and

performance control

 Might be mitigated by using a filter

 Accuracy of power models

FAQs

46

 Thermal zones structured as tree

(supports multiple temp sensors)

 Power restricted by cooling devices

 Allocated power is minimum of that

requested by all thermal zones

 Rapid limiting from CPU cluster temp sensor

 Additional limiting from motherboard sensor

Thermal zone hierarchy

Device tz

SoC tz

Big tz Little tz

Backlight

GPU tz

Temp sensor

47

Thermal zone hierarchy (2)

 In this example, the SoC thermal zone

doesn’t have a sensor for itself

 We can build its thermal zone by

making the Big tz and GPU tz by

children of it.

 With platform code
thermal_zone_add_subtz(soc_tz, big_tz);

thermal_zone_add_subtz(soc_tz, gpu_tz);

 With device tree
thermal-zones {

 soc_tz {

 polling-delay = <1000>;

 polling-delay-passive = <100>;

 sustainable_power = <2500>;

 thermal-sensors = <&big_tz &gpu_tz>;

 };

Device tz

SoC tz

Big tz Little tz

Backlight

GPU tz

Temp sensor

48

 Antutu

 GLB Egypt

Multiple temp sensors Combine multiple temp

sensors – exynos port takes

max of all 5 temp sensors

CPU CPU

GPU

Temp

highest

GPU CPU

CPU

peak

GPU

