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Intelligent Power Allocator – Tuning Guide 
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 Temperature is proportional to power consumption 

 Power is consumed by the various components in the SoC 

 Controlling device power consumption can be used to control temperature 

 Intelligently allocating power should maximise performance 

What is IPA? 
Concept 
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 Proportional Integral Derivative (PID) Controller 

 Inputs 

 Configuration Parameters 

 Temperature 

 Requested Power 

 Outputs power grants 

 Integrates with the Linux Thermal sub-system 

What is IPA? 
Components - Power allocator thermal governor 
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 Implement device power model 

 ‘big’, ‘LITTLE’, ‘GPU’, etc., are devices 

 Can restrict device power consumption 

 Translate power <-> performance cap 

 Meaning of performance is device dependent 

 Frequency for cpufreq and devfreq cooling devices 

 Could be charging current for battery or brightness for LCD 

 Need to support power extensions API to work with power allocator governor 

 requested_power, state2power, power2state 

 Without these, it’s a legacy cooling device that works with other governors 

 Implementation already available for 

 cpu cooling 

 devfreq cooling 

What is IPA? 
Components - Cooling devices 
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Algorithm - Overview 
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Governor performs two tasks: 
 

1. Keeps system within thermal 

envelope 

 Proactive power budget via closed loop 

control 

 Exploits thermal headroom 
 

 

 

2. Dynamic power allocation per 

device 

 Performance demand & power models 

 Power divided based on what each device 

requested.  Anything left over is distributed 

among the devices, up to their maximum. 

 

PID 

Power  

arbitration 
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 PID controller estimates available thermal headroom (power budget) using previous and 

current temperatures 

 Assumes the controller is driven at uniform time intervals 

 Error e = control temperature – current temperature 

 estimated_power = k_p * e + k_i * ∑e + k_d * d/dt (e) 

 output = sustainable_power + estimated_power 

 Output is allocated to requesting devices based on their power requests 

 Cooling device translate power grant to performance caps 

 

Algorithm 
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 Proportional 

 k_pu – when temperature is under control temperature, e > 0 

 k_po – when temperature is over control temperature, e < 0 

 Integral k_i 

 Only used when e < integral_cutoff 

 Integral_cutoff is 0 by default 

 Derivative k_d 

 Currently unused 

 

PID Parameters 
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Implementing IPA on your platform 



9 

 

 Ensure kernel has support for power allocator thermal governor 

 Available in 

 Linux v4.2+ 

 Linaro LSK 3.10 

 Linaro LSK 3.18 

 Chrome OS 3.14 (in-progress) 

 Chrome OS 3.18 

 Operating Points (OPPs) are used for DVFS 

 cpufreq 

 devfreq 

 

Setup 
Prerequisites 
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 https://git.linaro.org/landing-teams/working/arm/kernel-release.git 

 lsk-3.18-armlt (use ‘lsk-3.18-armlt-20151001’ or later tag) 

 lsk-3.10-armlt-juno (choose ‘lsk-3.10-armlt-juno-20150424’ or later tag) 

 

 Contains IPA + GTS integrated with Juno port 

 

 Includes example power cooling device implementations 

 Includes devfreq based integration of GPU (Mali Midgard) 

 Includes Juno porting 

 

Linaro Stable Kernels (LSK) for IPA evaluation 

https://git.linaro.org/landing-teams/working/arm/kernel-release.git
https://git.linaro.org/landing-teams/working/arm/kernel-release.git
https://git.linaro.org/landing-teams/working/arm/kernel-release.git
https://git.linaro.org/landing-teams/working/arm/kernel-release.git
https://git.linaro.org/landing-teams/working/arm/kernel-release.git
https://git.linaro.org/landing-teams/working/arm/kernel-release.git
https://git.linaro.org/landing-teams/working/arm/kernel-release.git
https://git.linaro.org/landing-teams/working/arm/kernel-release.git
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 cpu cooling for CPUs 

 devfreq cooling for GPUs 

 Provide dynamic power coefficient 

 API call 

 device tree? 

 Used to calculate dynamic power coefficient 

 Pdyn = dynamic-power-coefficient *  V2 * f 

 If significant, static power consumption can be provided via callback 

 Recommend to initially concentrate on dynamic power model 

 

 

Setup 
Cooling devices 
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 Static leakage power consumption depends on a number of factors 

=> needs subroutine to calculate 

 Time the circuit spends in each 'power state‘  (e.g. ON, OFF, ‘retention’) 

 Power managed regions 

 Temperature 

 Voltage 

 Process (e.g. slow to fast – possibly varies on specific chips – bins etc) 

 Type, number and size of transistors in both the logic gates and any RAM elements included. 

(e.g. LVt vs. HVt transistors) 

 

 Note:  OS awareness of factors affecting static power can vary, so the static model is 

likely to be platform specific 

 

 

 

CPU Power Cooling Device 
Static Power 
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 Juno model is simple 

 Number of CPUs ON 

 Temperature 

 Voltage 

 Cache leakage if cluster ON 

Example - Juno platform static power function 
/* voltage in uV */ 
static int get_static_power(cpumask_t *cpumask, int interval, 
       unsigned long u_volt, u32 *static_power) 
{ 
 unsigned long temperature, t_scale, v_scale; 
 u32 cpu_coeff; 
 int nr_cpus = cpumask_weight(cpumask); 
 enum cluster_type cluster = 
  topology_physical_package_id(cpumask_any(cpumask)); 
 
 if (!scpi_temp_sensor.tzd) 
  return -ENODEV; 
 
 cpu_coeff = cluster_data[cluster].static_coeff; 
 
 /* temperature in mC */ 
 temperature = scpi_temp_sensor.tzd->temperature / 1000; 
 
 t_scale = get_temperature_scale(temperature); 
 v_scale = get_voltage_scale(u_volt); 
 
 *static_power = nr_cpus * (cpu_coeff * t_scale * v_scale) / 1000000; 
 
 if (nr_cpus) { 
  u32 cache_coeff = cluster_data[cluster].cache_static_coeff; 
 
  /* cache leakage */ 
  *static_power += (cache_coeff * v_scale * t_scale) / 1000000; 
 } 
 
 return 0; 
} 

 IPA doesn't currently track the 

residency of the CPUs in the 

different idle states and account for 

the static power accordingly 
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 Pass a function pointer that follows the ‘get_static_t’ prototype: 

 

     int plat_get_static(cpumask_t *cpumask, int interval, unsigned long voltage, 

                              u32 *power); 

 

 `cpumask` a mask of the cpus involved in the calculation, 

 `interval` is the last period (usually the power allocator period) 

 `voltage` the voltage at which they are operating (in microvolts – uV) 

 `power` output variable, the function should write the static power there 

 

 If ‘plat_static_func’ is NULL when registering the power cpu cooling device, static 

power is considered to be negligible for this platform and only dynamic power is 

considered. 

 

 

 

CPU Power Cooling Device 
Static Power - registering 
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 The platform specific callback can then use any combination of tables and/or equations 

to calculate the static power.  [this can include platform or device/bin-specific process 

grade data if available] 

 

 Note: the significance of static power for CPUs in comparison to dynamic power is 

highly dependent on implementation.  Given the potential complexity in implementation, 

the importance and accuracy of its inclusion when using cpu cooling devices should be 

assessed on a case by cases basis. 

 Juno we use static power calculation 

 Exynos (HKMG process) we don’t use static power 

 

CPU Power Cooling Device 
Static Power - calculation 
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 The Mali power cooling device is supported in the r5p0 version of the DDK for 

Midgard GPUs 

 

 Uses devfreq 

 

 Assumes GPU is a large block of logic that all runs at specified voltage/frequency 

 

 drivers/gpu/arm/midgard/mali_kbase_devfreq.c 

 

 Being ported to Utgard as well 

 

 

 

 

Mali GPU Power Cooling Device 
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 Setup thermal zone with appropriate sensor 

 Representative sensor (such as SoC sensor or skin sensor) or a combination of device sensors 

 Provide sustainable power 

 Device tree 

 Thermal zone parameters 

 Enable CONFIG_THERMAL_GOV_POWER_ALLOCATOR 

 Set policy to power allocator. Can be done via 

 Compile time default, CONFIG_THERMAL_DEFAULT_GOV_POWER_ALLOCATOR 

 Setup in userspace at boot time by writing ‘power_alloator’ to policy node in thermal zone 

 Setup two passive trip points 

 first trip point is “switch on” temperature 

 Second trip point is “control” temperature 

 Bind cooling devices to “control” trip point 

Setup 
Thermal zone 
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 Upstream version of IPA is implemented as a new governor, called ‘power allocator.’ 

  

                                                                  

 

Setup 
CONFIG ENTRIES 

CONFIG_THERMAL_GOV_POWER_ALLOCATOR                 

           

Enables power allocator governor 

 

CONFIG_THERMAL_DEFAULT_GOV_POWER_ALLOCATOR Makes power allocator the default governor 

 

CONFIG_DEVFREQ_THERMAL Enables thermal management for devfreq devices 

(used by Mali Thermal driver) 

CONFIG_MALI_DEVFREQ Enabled devfreq for Mali 

 

CONFIG_CPU_THERMAL Cpu cooling device 

CONFIG_DEVFREQ_THERMAL Devfreq cooling device 

CONFIG_SCPI_THERMAL Enables the Juno Platform thermal integration 

CONFIG_PM_OPP Enable Operating Performance Point (OPP) library 

CONFIG_DEBUG_FS Recommended during tuning for /d files 

CONFIG_THERMAL_WRITABLE_TRIPS Change trip points from sysfs, useful for tuning 

Power allocator 

specific configs 

Other useful 

generic configs 

Juno specific 
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 Registering thermal_zone_device with estimate of the max sustainable power (in mW). 

Use ‘thermal_zone_params’ that have a ‘sustainable_power’. e.g. 

pass  ‘tz_params’ as the 5th parameter to ‘thermal_zone_device_register()’ 

 

 

 

 Other parameters (k_po, k_pu,…) can be passed as thermal_zone_params 

 Trip points can be either active or passive 

 "switch on" - temperature above which the governor control loop starts operating 

 "desired temperature" - PID target temperature 

 Bind() op of the thermal zone can now include the weight of the cooling device 

 

No DT registering thermal_zone and trip points 

static const struct thermal_zone_params tz_params = { 
   .sustainable_power = 3500, 
}; 
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Power allocator 

 

2 passive trip points 

trip-point@0 

trip-point@1 

DT registering thermal_zone and trip points 
 thermal-zones { 
  skin { 
   polling-delay = <1000>; 
   polling-delay-passive = <100>; 
   sustainable-power = <2500>; 
 
   thermal-sensors = <&scpi_sensor0 3>; 
 
   trips { 
    threshold: trip-point@0 { 
     temperature = <55000>; 
     hysteresis = <1000>; 
     type = "passive"; 
    }; 
    target: trip-point@1 { 
     temperature = <65000>; 
     hysteresis = <1000>; 
     type = "passive"; 
    }; 
   }; 
 
   cooling-maps { 
    map0 { 
         trip = <&target>; 
         cooling-device = <&cluster0 0 4>; 
                                                     contribution = <1024>; 
    }; 
    map1 { 
         trip = <&target>; 
         cooling-device = <&cluster1 0 4>; 
                                           contribution = <2048>; 
    }; 
    map2 { 
        trip = <&target>; 
        cooling-device = <&gpu 0 4>; 
                                                    contribution = <1024>; 
    }; 
   }; 
  }; 
 }; 
 

Currently only trip-points, sustainable-power and 

weights can be specified in DT 

 

(ARM looking at adding support for the other 

parameters when no chance of further change) 

 

When using DT, boot happens with defaults and 

userspace can change it by writing to sysfs files. 

Switch_on 

55degC 

Target temp 

65degC 
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struct element DT name sysfs (writeable) 

switch_on temperature trip-point@0 trip_point_0_temp Temperature above which IPA starts operating 

(first passive trip point – trip 0) 

desired_temperature trip-point@1 trip_point_1_temp Target temperature 

(last passive trip point – trip 1) 

weight contribution cdevX_weight Weight for the cooling device 

sustainable_power sustainable-power sustainable_power Max sustainable power 

k_po [future] k_po Proportional term constant during temperature overshoot 

periods  

k_pu [future] k_pu Proportional term constant during temperature 

undershoot periods 

k_i [future] k_i PID loop's integral term constant (compensates for long-

term drift) 

When the temperature error is below ‘integral_cutoff ’, 

errors are accumulated in the integral term 

k_d [future] k_d PID loop's derivative term constant (typically 0) 

integral_cutoff [future] integral_cutoff Typically 0 so cutoff not used 

Setup 
Porting parameters 

sysfs location:  /sys/class/thermal/thermal_zoneX/: 
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 Cooling devices 

 # of cooling_device* nodes in /sys/class/thermal match configuration 

 Thermal zones 

 # of thermal_zone* nodes in /sys/class/thermal match configuration 

 “cat temp” in thermal_zone to check if sensor reports reasonable temperature (in mC) 

 Value of sustainable_power in thermal_zone matches configuration 

 Check trip point temperatures in trip_point_*_temp nodes 

 Iinks to bound cooling device 

 Weights associated with cooling devices 

 Ensure cooling devices are bound to “control” trip point 

Setup 
Validation 
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Tuning 
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 Identify workloads 

 Should include single as well as multiple device loads 

Workloads 



25 

 

 Bias power allocation among cooling devices in a thermal zone 

 CPU vs GPU 

 Can express relative efficiency among similar cooling devices 

 E.g., big.LITTLE 

 TODO formula that equalises ‘big’ to ‘LITTLE’, or goes even further to bias towards ‘LITTLE’ 

 For mobile, we suggest setting GPU weight equal to ‘LITTLE’ 

 Bias power allocation to the GPU 

 Found to give good performance for mobile workloads 

 Only a suggestion, different usecases may benefit from alternate biasing 

Weights 
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 A mechanism to bias the allocation amongst cooling devices 

 

 When cooling devices request power, that request is multiplied by the weight 

 Power-efficient devices should have higher weights 

 

 Recommendation for typical big.LITTLE SoC: 

 Favors little cpu when limiting CPU’s 

 

 

 

 Will change when EAS/IPA integrated 

Weights – used to prioritize cooling 

Weight / 

‘contribution’ 

big cpu 1024 

little cpu 2048 

GPU 1024 
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 Run workload 

 Initial conditions are consistent across runs 

 Capture ‘thermal*’ trace events 

 workload automation makes this easy 

 Generate report using tuning flow template 

Methodology 
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 trace-cmd 

 git clone git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/trace-cmd.git –b trace-cmd-v2.6 

 cd trace-cmd 

 make && sudo make install 

 Workload automation 

 sudo pip install wlauto[all] 

 TRAPpy 

 sudo pip install trappy[notebook] 

 Tuning flow 

Tooling 
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 Captures kernel trace in an in-memory buffer 

 Dumped to file at the end of the run 

 Sample trace - 
kworker/7:2-4443  [007]  2107.527795: thermal_temperature:  thermal_zone=exynos-therm id=0 temp_prev=73242 

temp=72997 

kworker/7:2-4443  [007]  2107.527895: thermal_power_cpu_get_power: cpus=000000f0 freq=800000 load={0 0 0 0} 

dynamic_power=0 static_power=0 

kworker/7:2-4443  [007]  2107.527916: thermal_power_cpu_get_power: cpus=0000000f freq=1500000 load={16 52 5 24} 

dynamic_power=249 static_power=0 

kworker/7:2-4443  [007]  2107.527920: thermal_power_allocator_pid: thermal_zone_id=0 err=3892 err_integral=0 p=5321 i=0 

d=0 output=7821 

kworker/7:2-4443  [007]  2107.527960: thermal_power_cpu_limit: cpus=000000f0 freq=1900000 cdev_state=0 power=4165 

kworker/7:2-4443  [007]  2107.527970: thermal_power_cpu_limit: cpus=0000000f freq=1600000 cdev_state=0 power=1100 

kworker/7:2-4443  [007]  2107.527977: thermal_power_allocator: thermal_zone_id=0 req_power={2555 0 996} 

total_req_power=3551 granted_power={2555 4165 1100} total_granted_power=7820 power_range=7821 

max_allocatable_power=10283 current_temperature=73108 delta_temperature=3892 

Kernel Trace 
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 To configure tracing in WA add the following to your agenda: 

 instrumentation: [trace-cmd] 

 trace_events: [‘thermal*’] 

 

 If you want to run trace-cmd manually do: 

 trace-cmd –e “thermal*” 

 The thermal framework ones are all prefixed with “thermal_” and the power allocator ones are 

prefixed with “thermal_power_allocator_” so “thermal*” captures all of them. 

 

 Also visible in debugfs: /sys/kernel/debug/tracing/events 

Tracing in WA 
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Running workloads 

 An example of a Workload Automation 

agenda for Juno can be seen on the right 

hand side 

 The notebook template will be 

distributed with the IPA Tuning Flow 

(not yet done) 

 For more documentation on WA see 

https://pythonhosted.org/wlauto/  

 Run the agenda with 

wa run /path/to/agenda.yaml 

config: 

        device: juno 

        device_config: 

                adb_name: 10.2.131.84:5555 

        instrumentation: [fps, trace-cmd] 

        result_processors: [ipynb_exporter] 

        trace_events: ['thermal*'] 

        ipynb_exporter: 

                notebook_template: /path/to/template.ipynb 

                convert_to_pdf: True 

                show_pdf: True 

 

global: 

        iterations: 1 

 

workloads: 

        - name: antutu 

          params: 

                times: 5 

https://pythonhosted.org/wlauto/
https://pythonhosted.org/wlauto/
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IPA Tuning flow (1) 

The first graph is the temperature graph.  The yellow dashed line is the control temperature, the temperature 

we’re aiming for.  The blue line is the current temperature. 
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 The Utilization plot shows the load of each of the power allocator cooling devices:  big, 

LITTLE and GPU. Normalized utilization is 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 ∗ 𝑓𝑟𝑒𝑞 𝑚𝑎𝑥𝑓𝑟𝑒𝑞 .  

 

IPA Tuning flow (2) 
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IPA Tuning flow (3) 

 Allfreqs plots show the current 

frequency (in) and the frequency 

granted by the power allocator 

governor (out) 
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 The PID plot shows each component of the PID algorithm and its contribution to the 

output (the power granted by IPA). 

 It’s recommended to have the output (blue line) dominated by the “p” component, with 

“i” component doing minor corrections. 

 

IPA Tuning flow (4) 
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 The input power plot shows how much power each device consumes as seen by the 

power allocator governor.  Weight is not taken into account (see next slide). 

IPA Tuning flow (5) 
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 The weighted input power is what the governor uses to make its allocating decisions.  

For the plot below, the weights for big/LITTLE/GPU were 768/4096/1024, that’s why the 

LITTLE appears to ask for so much power. 

 

 

IPA Tuning flow (6) 
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 The output of the PID (“output” in the PID plot) is divided amongst the cooling devices. 

 The output power plot shows how much power the governor granted to each device.  

 In the example below we see that in the beginning, when there’s thermal headroom,  A15 and GPU get 

plenty of power.  As the temperature approaches the control temperature, they are constrained.  The A7 

gets its maximum power throughout the run as it’s the most power efficient CPU.  The GPU gets more 

power than the A15, as it’s a GPU intensive workload. 

IPA Tuning flow (7) 
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 The frequency histograms show the same data as the allfreqs plots but as histograms. 

IPA Tuning flow (8) 
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 The temperature histogram shows the same information as the previous temperature 

plot but as a histogram.  

 It allows you to see the spread of temperatures and how well tuned the solution is. 

 Note that for some benchmarks that have parts that are not CPU or GPU intensive 

(like AnTuTu), it’s not possible (or desirable) to have the device always at control 

temperature. 

IPA Tuning flow (9) 
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 Rate of temperature rise (from ambient) 

 Too gentle – not enough power 

 Performance being capped below control? 

 Too fast – leading to unacceptable overshoot 

 Duration of high frequency / performance above control? 

 k_pu and sustainable power 

 Overshoot above control 

 Brief period of overshoot can give turbo like behaviour 

 Check when all devices loaded – is the overshoot acceptable? 

 Affected by k_po, k_i 

 Time for temperature to return to control temperature once crossed 

 Does it take too long? 

 k_i 

Things to observe 
Temperature… 
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 Temperature not controlled with all devices at lowest power 

 Control temperature too low? 

 Other means of reducing power control required 

 Hotplug 

 Turn off shaders for GPU 

 Controlling other heat generating devices 

Things to observe 
Temperature 
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 Unweighted request follows expected workload pattern 

 Output power decreases above control temperature 

 Allocation of power follows weighted power requests 

Things to observe 
Power 
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 Linux kernel level documentation: 

 Documentation/thermal/power_allocator.txt 

 Documentation/thermal/cpu-cooling-api.txt 

 

 Collaboration with Linaro in PMWG 

 

 Consulting with ARM support ‘landing team’ 

 

Other support & documentation 

https://git.linaro.org/landing-teams/working/arm/kernel-release.git/blob/932dd335cbf1a55e268b7d6c055db8f70cdbf7ca:/Documentation/thermal/power_allocator.txt
https://git.linaro.org/landing-teams/working/arm/kernel-release.git/blob/932dd335cbf1a55e268b7d6c055db8f70cdbf7ca:/Documentation/thermal/power_allocator.txt
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 Device vs SoC vs skin temperature control 

 Device thermal zone to prevent crossing junction temperatures 

 Use combination (max?) of sensors for SoC, if representative sensor not available 

 Looking into adding support to Linux 

 Skin temperature can be used to drive the PID loop as well 

 Sensor resolution and accuracy 

 Linux thermal framework in milliCelsius 

 Higher resolution allows finer grained control of power 

 Lower resolution results in jumps in TDP estimate with corresponding bursty temperature and 

performance control 

 Might be mitigated by using a filter 

 Accuracy of power models 

 

FAQs 
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 Thermal zones structured as tree 

(supports multiple temp sensors) 

 

 Power restricted by cooling devices 

 

 Allocated power is minimum of that 

requested by all thermal zones 

 

 Rapid limiting from CPU cluster temp sensor 

 

 Additional limiting from motherboard sensor 

 

Thermal zone hierarchy 

Device tz 

SoC tz 

Big tz Little tz 

Backlight 

GPU tz 

Temp sensor 
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Thermal zone hierarchy (2) 

 In this example, the SoC thermal zone 

doesn’t have a sensor for itself 

 We can build its thermal zone by 

making the Big tz and GPU tz by 

children of it. 

 With platform code 
thermal_zone_add_subtz(soc_tz, big_tz); 

thermal_zone_add_subtz(soc_tz, gpu_tz); 

 With device tree 
thermal-zones { 

 soc_tz { 

    polling-delay = <1000>; 

    polling-delay-passive = <100>; 

    sustainable_power = <2500>; 

    thermal-sensors = <&big_tz &gpu_tz>; 

 }; 

 

 
Device tz 

SoC tz 

Big tz Little tz 

Backlight 

GPU tz 

Temp sensor 
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 Antutu 

 

 

 

 

 

 

 GLB Egypt 

Multiple temp sensors Combine multiple temp 

sensors – exynos port takes 

max of all 5 temp sensors 

CPU CPU 

GPU 

Temp 

highest 

GPU CPU 

CPU 

peak 

GPU 


