
INSTALLING AN RTC MODULE TO DSO2X1X

MODULE OPTIONS

There are multiple pre-made modules available al Aliexpress and other online stores. Those based
on the DS1307 and DS3231 seem to be very popular. For example:

This one is based on the DS1307 is one of the
cheapest. Besides the RTC IC itself, it also
includes an AT24C32 I2C serial EEPROM
mapped at the same address than the scope’s
EEPROM, so the module has to be modified
(see next section). On its favour, is one of the
cheapest, as can be found for about $1,30 at
the time of writing.

This second one is based on DS3231 and also has an
AT24C32 EEPROM, but in this case pins 1-3 (A0-A2) are
pulled up, so its default address is 0x57, which does not
collide with the DSO’s EEPROM. Also provides 3 solder
jumpers (labelled A0, A1 and A2) in case you want to change
the address by shorting them.

The DS3231 is more precise than the DS1307, as its internal
oscillator is temperature compensated. For this
compensation, it also includes a temperature sensor that
can be read from the I2C bus, which would allow checking
the internal temperature of the oscilloscope. This one can be
found for approx. $3,80 at the time of writing. Modifying the battery charging circuitry is also
convenient in this module, as well as in the first one (see next section).

The third one costs about $2,20 and is also based on
DS3231, but this time it doesn’t include an EEPROM. Its
advantage is that it has the smallest footprint (barely
bigger than the IC itself) and a rechargeable battery. It’s
so small that could be fitted on top the MCU so the
internal temperature sensor could be used to check the
MCU’s temperature if overclocking, for example. This module doesn’t need any modifications, as
there’s no EEPROM or external charging circuitry.

MODULE MODIFICATIONS

If the module has an EEPROM at the same address than the
one in the scope (0x50), there would be conflicts when
installed in the scope, so modifications are needed. EEPROM’s
I2C address of this kind is set by grounding or pulling up pins
1-3 (A0-A2, the 3 least significant bits of the address),
according to the datasheet. Base address is 0x50, so if these
pins are grounded, this would be the EEPROM’s address. In
this case, it’s necessary to unsolder the EEPROM, or pulling up
one or more of these pins to change its address. For example,
in the photo you can see pin nº 1 lifted from the PCB and
pulled up to Vcc with a 10k resistor.

For the first two modules, if using a non-rechargeable coin cell, it’s also convenient to modify the
battery charging circuit, by removing the diode and/or resistor in series (D1-R5 in the DS1307
module, unlabelled in the second DS3231 module). For the DS1307 module in the photo, shorting
R6 and removing R4 is also convenient to improve battery life (these don’t exist in the second
DS3231 module). See here and here for more information on the modification and schematics of
these modules.

MODULE INSTALLATION

In order to connect the RTC module to the oscilloscope’s I2C bus, I chose soldering cables to the
pins of the serial EEPROM (U9), as the other possibilities (pins of the MCU or the FPGA) would
have been much harder.

I used red and black for Vcc (3.3V) and GND and white and blue for SCL and SDA, respectively.
These four cables go to the correspondent connections of the modules. I also used some hot melt
glue to secure the cables to the PCB to avoid stressing the soldered connections:

The module should then be connected to these cables and fixed in an appropriate place; as this
depends on the chosen module, I leave this to your imagination… hot glue or double sided
adhesive tape are good options.

SOFTWARE

In order to get the oscilloscope working with the RTC, it’s necessary to install the appropriate
software for reading the RTC and setting it whenever it’s needed (first installation, when changing
from summer to winter Daylight Savings Time, etc). After several attempts, the final scripts
written by DavidAlfa and published here are the best option. The easiest way to install them by
using David’s installation packages available at his Google Drive (instructions there in the readme
file).

If you prefer manual installation from the console, you need to extract the files from those
packages (or create them from the post) and copy them to the scope as follows:

 The script called S11_date_daemon.sh to launch the daemon that should be copied to
/etc/init.d

 The daemon itself, called date_daemon, should be copied to /usr/bin/. If using DS3231,
2nd line must be commented out, and the reverse with the 3rd line. This is very important
as, leaving the script as is with DS3231 would result in overwriting control registers with
random information with unpredictable results

 As the daemon calls them, David’s statically compiled I2C tools must also be copied to
/usr/bin (at least, i2cget; i2cset and i2cdetect), and to /usr/lib (libi2c.so.0).

The daemon reads the RTC and sets system date and time on boot time, and monitors the USB
drive for a file called “date”. If it exists and its timestamp is different from previous occasions,
then sets the RTC and system time according to the file’s timestamp. So, to set the time, you just
need to create or update a file called “date” in the root directory of the USB pendrive (can be
empty, file contents doesn’t matter) and plug it in the scope.

BACKGROUND

The daemon was written for the DS3231 and the DS1307, The first one has the following registers:

The daemon reads and writes the registers associated with time and date, 00h to 06h. From the
datasheet:

“The time and calendar information is obtained by reading the appropriate register bytes.
Figure 1 illustrates the RTC registers. The time and calendar data are set or initialized by
writing the appropriate register bytes. The contents of the time and calendar registers are in
the binary-coded decimal (BCD) format. The DS3231 can be run in either 12-hour or 24-hour
mode. Bit 6 of the hours register is defined as the 12- or 24-hour mode select bit. When high,
the 12-hour mode is selected. In the 12-hour mode, bit 5 is the AM/PM bit with logic-high
being PM. In the 24-hour mode, bit 5 is the 20-hour bit (20–23 hours). The century bit (bit 7 of
the month register) is toggled when the years register overflows from 99 to 00.”

The equivalent table for the DS1307 is practically the same as far as time registers are concerned,
so the script probably will work also OK with this chip:

“The DS1307 can be run in either 12-hour or 24-hour mode. Bit 6 of the hours register is
defined as the 12-hour or 24-hour mode-select bit. When high, the 12-hour mode is selected.

In the 12-hour mode, bit 5 is the AM/PM bit with logic high being PM. In the 24-hour mode, bit
5 is the second 10-hour bit (20 to 23 hours). The hours value must be re-entered whenever the
12/24-hour mode bit is changed.”

Finally, as can be seen in the previous table, the DS1307 has 56 bytes of RAM from address 08
onwards. The daemon takes advantage of this to store the information needed for date setting.
But this zone in the DS3231 contains control registers, so the daemon uses scope’s internal flash
when working with this chip.

