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A particular lime-varying network consisting of several parallel trans-

mission paths, each containing input and output modulators, is described

and analyzed. It is shown that, under certain conditions, the network may

be characterized by a transfer function. A particular form of this transfer

function yields periodic filtering characteristics over a limited frequency

band without employing distributed elements. Techniques are also presented

for realizing highly selective band-pass filters without the use of magnetic

elements. Some practical applications are discussed in detail and experi-

mental verification is presented.

I. INTRODUCTION

The application of conventional design techniques to network prob-

lems in systems operating at relatively low frequencies often leads to

impractical circuits. In addition, designs based on active RC techniques

are frequently very sensitive to small changes in element values. Alter-

natively, a time-varying network approach to the solution of a wide

class of such problems appears to be particularly promising.

The time-varying network described and analyzed in this paper con-

sists of a parallel combination of N identical linear time-invariant net-

works, each operating between input and output modulators. Attention

is focused upon several properties of this configuration that are of the-

oretical as well as practical importance. In particular, these properties

include:

i. Periodic filtering characteristics can be obtained over a limited

frequency band without employing distributed elements. The practical

uses for this property include the realization of low-frequency comb

filters.
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ii. Narrow-band band-pass and band-elimination filters can be re-

alized at very low frequencies by networks free from magnetic elements.

The center frequency of these filters is electronically controllable.

iii. An exact low-pass to band-pass translated version of the con-

stituent network transfer function can be realized. The low-pass to band-

pass transformation technique can also be applied to driving-point

immittances.

The network under consideration is shown in block diagram form in

Fig. 1. The time functions u(t),v(t), xn (t) and yn (t) may be interpreted

to be either voltages or currents. The input modulators (multipliers)

operate on the input u(t) to produce the inputs

xn (t) = u(t)p[t - (n - 1)t]

to the N identical linear time-invariant networks with impulse response

h(t). The outputs yn (t) are passed through output modulators to form

path outputs v„(t). The final output v(t) is the sum of the path outputs.

The time functions p[t — (n — 1)t] and q[t — (n — l)r] are periodic

with period T, where T = Nt.

In the next section the general input-output relationship for the N-
path configuration is developed and discussed. The following sections

are concerned with features associated with particular types of modu-

lating functions. Some practical applications are discussed in detail and

experimental verification is presented.

p|_t-(N-.)rJ q[t-(N-i)r]

Fig. 1.— The iV-path configuration.
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II. GENERAL PROPERTIES OF THE AT-PATH CONFIGURATION

2.1 General Input-Output Relationship

In this section we derive the relationship between V(s) and U(s),

the network's frequency domain output and input, f

The periodic functions p(t) and q(t) can be expressed by their com-

plex Fourier series:

m=+oo

p{t) = E Pmeiuom ',

8(0 = E Qie
iaolt

,

where m = 2r/T = 2tt/Nt. It is convenient to define

pn (t) = p[t - (n - l)r],

Qn(t) = q[t - (n - l)r].

Since multiplication in the time domain corresponds to convolution

in the frequency domain, it follows that

V(s) = E F.(«) = E F„(s) ® Q.(«). (3)
n=l n=l

Using the relation

,/( s ) g> _L_ = J( s - a ) (4)
S — a

and (1), (2) and (3), we obtain

V(s) = E ifQie-
im{n~l)lTXn{s - jlm)H(s - jlm), (5)

«=1 J =-00

where

X n (s)H(s) = Yn (s). (6)

Similarly,

X n (s) = U(s) 8 P„(s) (7)

and

X„(s - jiwo) = E Pme-
jU0( "' l) '" T

U[s - j(m + 0«o].

t The time function and its Laplace transform are denoted, in accordance with

the usual notation, by lower and upper case letters respectively.
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Substituting (7) into (5) gives

V(a) = £ Q /P„,e-
yuo(n-1)a+m)r

^( S - jh»o)U[s - j(m + Z)a>„]. (8)
n,l,m

The summation over n is the following geometric series:

N = N, I + m = kN
,

£ e
-*-0<»-lX'+m)r

(9)
n=1 = 0, otherwise,

where k is an integer. Using (9), we obtain

V(s) = N S QiPkN-iH(s - jU)U(s - jkNm). (10)

It is convenient to write (10) in the form

V(s) = £ F(k,s)U(s - jkNcoo), (11)
A=-oo

F(fc,a) = AT Z QiPkN-iH(s - jlm). (12)

Expressions (11) and (12) constitute the general input-output rela-

tionship for the JV-path structure.

2.2 Transfer Function for N-Path Configuration

The quantity F(k,s) in (11) and (12) completely characterizes the

time-varying network of Fig. 1. It describes operationally the relation

between the input signal and output signal, as is shown symbolically in

Fig. 2(a). In this sense, F(k,s) may be considered analogous to the

characterization of a constant-parameter network in terms of a transfer

function. A feature of the iV-path configuration of particular interest

from the network theory viewpoint is that, with certain band-limiting

restrictions on the input and output signals, a transfer function relation

between input and output can be derived. It is this property that will

be investigated in the remainder of the paper.

If U(s) evaluated on the jco-axis essentially vanishes outside the in-

terval
|
co

I

< Ncoo/2, it follows that

V(ju) = F(0Ju)U(ju) in
|
c

|
< ^p. (13)

Furthermore, if V(joi) vanishes outside the interval
|
o

|
< A^co /2, then

V(s) and U(s) can be related by a transfer function T(s)

:

t(s) = YM1K8)
U(8)'
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where

T(jco) = F(Ojco) in
|
co

| <

= in I w I >

2 '

JVcO

(14)

These band-limiting constraints can be accomplished by preceding and

following the time-varying network with ideal low-pass niters having

cutoff at coc = iVcoo/2. With the addition of these low-pass filters, the

time-varying network is equivalent to a constant-parameter network

having a transfer function, F(0,s), preceded and followed by ideal low-

pass filters, as shown in Fig. 2(b).

An alternate expression for the transfer function will be developed in

the following equations. This expression leads to a closed form for

F(0,s).

From (12),

F(0,s) = N E P-iQiH(s - j7co ). (15)

This can be written as the Laplace transform of the product of the im-

u(t)

F(k,s)
vCt)

V(s)=£ F(k,s) U(s-jkNo> )

k=-oo

(a)

u(t)

IDEAL
LOW-PASS
FILTER

_ Ntt>
<*>C— —2~~

V(s)=T(s)U(s)

T(S)

F(0,S)

CM

IDEAL
LOW- PASS

FILTER
NUIq
2COr = v(t)

Fig. 2 — (a) Symbolic representation of F(k,s); (b) equivalent constant-param-
eter network.
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pulse response of the component networks, h(l), and a periodic function

with period T

:

F(0,s) = £ [h(i)N 2 P- [Q le
+i,u '>

t
~\

= A h(t) Z r(t - kT)\
(16)

where

E r(t - kT) = N S P-iQie
+i'"ot

. (17)

The pulse r(t) depends only on the modulating functions and not on the

response characteristics of the component networks. The identification

of r(t) with p(t) and q(t) is not unique. However, a particularly useful

relation is obtained by considering p(t) and q(t) to be represented by

infinite pulse trains wherein each pulse assumes the shape of one period

of the modulating functions ; that is,

where

p(0 = E a(t - kT),

q(t) = Z b(i - kT),

a(t) = p(t) inO ^ t^ T,

= otherwise;

b(t) = q(t) mO^t^T,
= otherwise.

(18)

(19)

Then it can be shown that

r(t) = % [ a(y)b{y + dy (20)
i '()

satisfies (17). Notice that r(t), like a(t) and b(t), is a duration-limited

function, in that

/•(/) = for |/
|
^ T. (21)

Since the Laplace transform of a product of time functions is given by
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the convolution of their transforms, (16) becomes

1321

F(0,s) = His) ® £ T E r(t - kTU (22)

and

whore

£ [Z;(l - W)] = «(«) +^Eil(-s)B(8)e-1

T t=i
(23)

R(s) = f r(t)e-' dt,
•'o

A(s) = [ a(t)e-'dt,
Jo

Bis) = f b(t)e~"d(.
Jo

(24)

The terms in k form a geometric series that is readily summed, so that

F(0,s) = His) Ris)

^Ai-s)Bis)e->
T

1 - e~'r
(25)

2.3 Transfer Function far Rational His)

If we now assume that H(s) is rational in s and regular at infinity,

then, assuming only simple poles,

H(s) = c„ + S
r=i S — 8,-

(26)

From (25),

F(0,s) =

c r(o) + Ec B(s - s^ +
^il(S,- S)B(S -s,)6-c-, ')T

1 - e
-(i-ii)T

. (27)

The functions Ris) and .4( — s)B(s) have no singularities in the finite

part of the s-plane. Thus, the singularities of F(Q,s) are given by the

zeros of 1 — e~
'""*' r

, which lie equally spaced at intervals of 2ir/T on

lines parallel to the j = w axis.
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III. SPECIFIC TYPES OF MODULATING FUNCTIONS

In this section the properties of the iV-path configuration are examined

for specific types of modulation that reveal particularly interesting

properties of the structure.

3.1 Sinusoidal Modulation

Suppose that the modulating functions possess only a finite number

of sinusoidal components:

m—U

M
jut) ml

Pit) = E p
m—U

q(t) =EQ
where

P-m = Pm aild Q-m = Qm.

The case for N > 2M deserves special attention, for then

QiPkN-i = for k ^ 0,

and, from (11) and (12),

V(s)

(28)

U(s)
= F(0,s)

.

(29)

Therefore, the network exhibits a transfer function T(s) for N > 2M,

without band-limiting restrictions, which is given by

T(s) = F(0,s).

Note that the transfer function is a finite sum of frequency-translated

versions of H(s). In particular, when Pm ,Q„ = for \m\ 9* 1, we have

T(s) = N[aiH(s - jo) ) + atH(s + jwo)], (30)

where

a, = &P-!

,

a "low-pass to band-pass transformation" of the transfer function H(s) f.

t This result can also be obtained with only two parallel paths. 1 Single sinusoid
modulating functions are employed, the two functions in one path being in phase
with each other and in quadrature with the functions in the other path. A similar
configuration has been considered by Hines and Desoer in unpublished work.
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A particularly difficult practical network problem is the low-frequency

realization of highly selective band-pass filters. Procedures that avoid

the use of magnetic elements are inviting, but active RC techniques often

lead to a high degree of transfer function sensitivity to both the active

and passive parameters. An alternate approach based on (30) appears

to be attractive, and should provide a considerable increase in the degree

of immunity from network parameter variations. Implementation of a

similar approach is discussed in more detail in Section 5.2.

The transfer function poles of a passive RC network are distinct and

on the negative-real axis of the complex-frequency plane. Consequently,

if H(s) is the transfer function of an RC network, the over-all transfer

function T(s) of (30) can have only distinct pairs of complex-conjugate

poles with identical imaginary parts. It is desirable to circumvent this

restriction without employing magnetic or active elements. It is suffi-

cient to consider the synthesis of the transfer function

«.)-gg. (3D

where T(s) has only simple complex-conjugate poles, since transfer func-

tions with multiple-order poles can be realized as the product of transfer

functions having only simple poles. We assume that T(s) is stable and

regular at infinity. Equation (31) can be expressed as

T(s) = K„ + E- bi
. + ,

6?
. , (32)

.=1 8 + <Ti — JUi S + ffi + JUi

From (30), each of the series terms can be separately realized with the

passive transfer function //,(«) = l/(s + tr,). Evidently we require

bt = NQiiP-u. (33)

Hence, a realization of (32) consists of M similar sections in parallel,

with an additional section that realizes the constant term. The main ob-

jection to this realization technique is that a large number of modulators

may be required, but it demonstrates that any transfer function that is

regular at infinity and stable can be realized with sinusoidal modulators,

a source of modulating frequencies and simple passive RC structures.

While this paper is primarily concerned with the synthesis of transfer

functions, it is worthwhile to sacrifice some degree of continuity here to

point out the relevance and extension of the preceding discussion to the

synthesis of driving-point impedances. The results of this section apply

also to the case where U(s) and V(s) are interpreted to correspond to
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the transforms of voltage and current at the same port. The forms taken

by the network for this special application are shown in Fig. 3. Suppose,

for example, that the nth two-port network in Fig. 3(a) is character-

ized by

in '(t) = p[t - (n - 1)tK(0,
, x

(34)
in(t) = q[t - (n- 1)tK'(0,

where p(t) and q{t) are given by (28). The driving-point admittance

l(s)

+ o

ECs)

- o

Z(S)|

Ca)

-n(t) L'n(t)

+ +

en (t) en (t)

n=N

Z(s)

_I

n
Z(S)

_l

(b)

L'n(t)t
r Z(s)h

+ e'n (t)
"

-n(t)

en(t)

o E (s) c-

1(5)

&
n=N

I J

Fig. 3 — Forms taken by network when U(s) and V(s) are interpreted as cor-

responding to transforms of voltage and current at same port.
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YiH = I(s)/E{s) is given by F(0,s), with H(s) replaced by Z(s). That is,

Y in (s) -

" (35)
NPoQoZis) + A'Z M(s - >"o) + olZ(« + jmu*)],

m=l

where

a m = Q„P-m and JV > 2M.

For the special case where P„,
, Q,„ = for

|
m

\
9^ 1 and a x is real,

Y in (s) = iVa,[Z(.5 - ju.) + Z(s + >•„)]. (36)

For example, if Z(s) = 1/sC,

, . 2Nai s , ,

Yin(s) = —pt-^TT v W>
C s

- +" wo

the admittance of an inductor and capacitor in series.

As in the transfer function case, (36) (and the analogous relations for

the following three other networks discussed here) can be realized with

only two parallel paths. Single sinusoid modulating functions are em-

ployed, the two functions in each two-port network being in quadrature

with the corresponding functions in the other two-port network.

If the two-port networks in Fig. 3(a) are characterized by

en '(t) = p[t - (n - l)r]en (t),

Kit) = q[t - (n - 1)t]iV(0,

we obtain

YUs) =

NPoQ„Y(s) + NY,[amY(s - jmu ) + atY(s + j'mui)],
m=l

where

Y(s) = - 1

38:

(39)

Z(s)

The two dual networks take the form shown in Fig. 3(b).

3.2 Jump Modulation

The physical implementation of the transfer function of (15) can be

accomplished without the difficulties normally encountered in the rcaliza-
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t

p(t) o

Pi

P2

fl

(a)

Pr
p.

:\-,

1

w(t)

-

(b)

o T/R

TIME, t

Fig. 4 — (a) Modulating function p{t) with R jumps in fundamental interval
T; (b) periodic switching function w(t).

tion of accurate multiplier circuitry by means of a scheme called jump
modulation. This scheme uses modulating functions having a finite num-
ber of equally spaced discontinuities or jumps in each fundamental in-

terval. The functions assume a constant value between jumps. Modula-

tors of this type can be realized by conventional switching techniques.

Suppose that the modulating function p(t) has R jumps in the funda-

mental interval T, as shown in Fig. 4(a)

:

pit) -g !*•[*- (r- 1)1]I - S *J(m2ir/r)t
(40)

where w(t) is the periodic switching function shown in Fig. 4(b).

The Fourier coefficients of p{t) are given by

Pm = ± Pit) e~^mi dt = ±T,Vr •-**"»
dt, (41)

i JO 1 t=1 J(.r-l){TlR)

Thus, the sequence of values Pm is given by a linear transformation of the

sequence of values, p T :

r e

Pm = E
Kmr/lt)

sin

mtr

m-w

R ->(2»/R )mr
(42)
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For design purposes, the inverse of this transformation is desired in

order that an appropriate set, pT , can be determined from an arbitrarily

prescribed set, Pm . Obviously, only R values can be independently pre-

scribed for the complex numbers Pm and, since p(t) is real, it is always

required that P-m = P* and Po be real. Hence, for example, a set of

values pr can be found such that all the Fourier coefficients Pm can

be arbitrarily specified for | m |
^ R/2. In this case, the inverse trans-

formation corresponding to (42) is relatively simple :f

-jimr/R) mir
(ft-n/2 e -5-

p r (R odd) = Z e
K2'IR)rmPm . (43)

m=-(ft-l)/2 . TTlT

When R is even, J

—KnurlR) niTT

p r (Reven) = T £- e
i{2" R)rmPm - j \ (-l)

rPft/2 . (44)

sin-^-

A case of particular interest in the iV-path configuration is for R = N,

when the jumps occur simultaneously in all paths and a common timing

source can be used for operating the switches. If the bandwidth of the

component networks is sufficiently small compared to wo , the transfer

function can be expressed approximately in terms of the first N/2 Fourier

coefficients:

T(jo)^N E QmP-mH(jo> -jmm), (45)
m=-Nl 2

where all the values of either Pm or Qm or both can be arbitrarily chosen.

3.3 Pulse Modulation

A special case of jump modulation of considerable practical importance

is for the set {pi = 1, p2 = Pz = • = ?>«, = 0| and {<?i = 1, q2 =

q3
= ... = qR2 = 0} , so that

t See Appendix A for derivation of the inverse transformation.

% From (42), it is seen that the real part of PRn must vanish, since
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•p{t) = Wi(l), ,._.
(46)

q(t) = w2 (t),

If the input generator, u(t), is a current source, each modulator in Fig.

1 can be replaced by a simple switch. In fact, when Rx and R2 > N, the

entire set of input and output modulators would then be equivalent to a

pair of Ar-contact rotary switches on a common shaft rotating at a rate of

l/T cps. The dwell time at each contact of the input and output switches

is given by dx
= T/R x and d-2 = T/R2 , respectively. In this case, the

switches are essentially signal-sampling devices, hence the general con-

figuration using this type of modulation will hereafter be referred to as

the N-path sampled-data network.

Besides being relatively simple to implement, the iV-path sampled-

data network has some very interesting transfer function characteristics.

If the component networks have a low-pass characteristic with band-

width small compared to m , the transfer function for large N will ap-

pear as a sequence of narrow, equally spaced passbands of identical

shape and nearly equal height, centered at integral multiples of a> .

This corresponds to the so-called "comb filter" characteristic, which is

frequently employed in the detection of periodic signals immersed in wide

band noise. Furthermore, it will be shown that the function F(0,s) be-

comes periodic on the Jco-axis as the dwell times di and d2 approach zero.

When H(s) is rational in s, this periodic function is of the form generally

associated with the network functions of circuits containing resistors

and ideal delay lines.

IV. TRANSFER FUNCTION FOR JV-PATH SAMPLED-DATA NETWORK

The expression for F(0,s) in terms of r(t) as given in (22) is especially

convenient for finding the transfer function of the iV-path sampled-data

network. Also, if H(s) is rational in s and regular at infinity, then (27)

gives an exact closed-form expression for F(0,s).

Suppose, for example, that dx = a\ = d < T. Then r(t) is simply the

triangular pulse,

r(t)=^(d-\t\) in|t|£tf,
(

= otherwise,

BW = » P« ~ ^- '-*>

]
(48)

SO
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and

4(-t)B(.) = (1 ~ e%d) (1 "°
- *,

. -
S

(49)

_ e — 2 + e

s
2

Then, assuming //(&•) to be in the form of (26), the transfer function

is obtained directly from (27):

F(0,s) =

cnNd N^f*\ (<T
M - 1 + \,d) + UiA - 1 - \id)e-

%iT (50)mT Tffi W/ 1 - e*'
r

where

X, = s — 5,- .

When
|
\,d

|
« 1, the transfer function can be approximated by a func-

tion that is periodic for values of s on any line parallel to the Jco-axis. If

the first three terms in the power series expansion for e
i and e~ ' are

retained, then

I' (0,s) ^ -^- +— ^Ci -
_ e

_ (a_8 . )T (51)

for

|
8 - Si

I

f/ « 1.

The relation (51) can be obtained in a different manner by application

of conventional sampled-data techniques." These techniques provide an

alternate approach worthy of investigation, since they lead to a simple

single-path sampled-data network, which is equivalent to the AT-path

sampled-data network. The approximation involved in this method of

analysis consists of replacing sampling switches by impulse modulators

(im), as shown in Fig. 5(a). The train of narrow rectangular modulating

pulses, w(l), has been replaced by an impulse train, where the magnitude

of each impulse is equal to the area of the corresponding rectangular

pulse. Hence,

p(0S4 E 8(t-kT), (52)

q(t) ££ d, J) 8(t - kT). (53)
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Then,

ir m — _, for all m

and

Qm = -£ for all m.

In this case, F(k,s) in (12) is independent of k and

F(k,s) = G(s) = N d
-^ E His- jU).
i i =—00

Then,

Via) = G(s) C/(s - jfctfcoo)
1

(54)

(55)

This input-output relation is identical to that of a single-path sampled-

data network having an input impulse modulator with sampling interval,

r = T/N, followed by a network with a transfer function, tG(s), which,

when s = jw, is periodic with period u . The periodic property of the

u(t)
TM
{T)

TG(S)
v(t)

(b)

u(t)
rG(s) IM

(r)

v(t)

(c)

Fig. 5 — (a) Approximate representation of iV-path sampled-data network;
(b) and (c) equivalent single-path networks.
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network following the impulse modulator in Fig. 5(b) allows the deriva-

tion of another equivalent network with the impulse modulator at the

output, as shown in Fig. 5(c). These simple equivalent networks are

very convenient for analysis purposes when one or more iV-path con-

figurations are component parts of a larger system.

The Fourier coefficients for the expression of G(s) when s = ju are

obtained directly from the sample values, h(rT), of the impulse response

of one of the component networks. If

GO) = Z gre^^\

then

(Ndld2\ 1 ["" ' X"» xt/. ., v ->(r2Tu/u ) jt

rpo )— / 2^ H{joi -jlu )e do)
L

l / O) J-uq/2 i—«

gr=
mdlh( _rTl (57)

The integral in (56) is the Fourier inversion integral for h(t). At dis-

continuities in h(t) the inversion integral gives the mean value of the

right- and left-hand limits at the discontinuity. Hence, for physically

realizable component networks.

<?(,) = J** [W+) + ± h (rT) .-'] . (58)

This expansion is particularly useful when H (s) is a rational function of

s. In this case, the series can be summed and G(s) is given in closed form.

Assuming H(s) has simple poles, thenf

h(t) = Z d e" for t ^ (59)

and, from (58),

«.) =^ £ «, Q + t e""-'
T

) . (60)

f In this analysis we require that H(s) —» as s —» » (co = 0) since the Laplace
transform for a product of impulse functions is not defined.
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I(J«) \

E(j«)

iCW

E(j«J R ±

00

Fig. 6 — The AT-capacitor element.

The sum over r in (60) is a geometric series and can be written in

closed form, so that

G(s) = NdA f* 1 +e
2T H C

'

1 - e

(»,—») r

(»i->)T
' (61)

Note the equivalence between (61) obtained by conventional sampled -

data techniques and the direct approximation of (51) to the transfer

function of the JV-path sampled-data network.

A simple example that illustrates the application of the preceding

techniques is the case where each component network is a single capaci-

tor, as shown in Fig. 6(a).f Capacitor loss is accounted for by the inclu-

sion of a resistance, Rc , across each capacitor. The relation between in-

put current and output voltage is represented by G(s) in (61), where

H(s) = (62)

s + R CC

t This case has been described in the literature. 3
-
4
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so that

M = 1,

Si = —
R CC

(63)

di = d2 = d

and

where

and

«•>-*[}*£] <«>

—T/B.C
p = e

R. =
*rf

2TC

The expression of (64) is equal to the driving-point impedance of a length

of lossless transmission line of characteristic impedance, Ro , terminated

at a distance corresponding to an electrical delay of T/2 seconds. The

termination is characterized by a reflection coefficient p = e °
, or

equivalently, by a resistance, R', where

Rf =Ro(l±^. (65)

If the capacitors are lossless, then

which is equal to the driving-point impedance of the same length of

lossless transmission line with open-circuit termination.

V. SOME PRACTICAL APPLICATIONS FOR THE N- PATH SAMPLED - DATA

NETWORK

5.1 Delay Network

The transcendental nature of G(s) of (66 ) for the JV-capaeitor element

suggests the possibility of realizing an all-pass constant-delay characteris-
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tic over a limited bandwidth without the use of inductors. One of several

possible configurations for accomplishing this is the simple feedback

network shown in Fig. 7, where the iV-capacitor element is contained in

the feedback path.

For the analysis of this circuit, it is assumed that the forward gain,

p, is sufficiently large that the error voltage, Vi + v3 , is essentially zero.

Note that

vo(t) = v3(t) + Rd(t) (67)

and, hence, because of the low-pass filter at the output, only the com-

ponents of Vi(ju) and I(ju) in the frequency range
|
a

\ S Nua/2 are

of interest. If Vi(jw) [and hence Vitfv)] is limited to this same band-

width, then

and

/(«) = Y(8)VM

(s) = - [1 + R*Y(s)] + K (68)

over the frequency band of interest, and Y(s) is a function of the N-path

type.

The constant-delay characteristic is obtained by making the RiC time

constant very small compared to the contact dwell time, d. Roughly

speaking, this means that the capacitors charge up to the applied voltage

in the time interval d, during which their respective switches are closed,

and the resulting current flow is a sequence of narrow exponentially de-

caying pulses occurring t seconds apart. An approximate representation

'
I Wv
I R 3

1 LOW-PASS
FILTER

*'S/I

N- CAPACITOR
ELEMENT

X
Fig. 7 — Constant-delay network.
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q[t-(n-i)r]

Fig. 8 — iV-path network used for describing the behavior of the constant-de-
lay network.

of this behavior in terms of the general AT-path configuration is shown in

Fig. 8. The applied voltage, V3 , is sampled with an impulse modulator

at the time of the nth switch closure and held at this value for T seconds

by means of the hold circuit, Hi(s). The current flowing in the series

combination of Ri and C in response to the applied voltage steps is ob-

tained by means of the transfer function

H2 (s) = ~
Ri s + a

'
(69)

where

RiC
»d.

The transfer function Y(s) is obtained from (25), where

A(s) = 1,

Then,

Y(s) = N 1 - e

TRi S + a

N(l - e~
sT

)

1 - e
-id -sd\ —IT"

1 - e

s

,-(i+a)d

+ (1 - e ) e

s(l - e~>T )

[1-e,-(«+a)di -(8+a)T

\
I _ e

-(s+a)T

(70)

(71)

TRi(s + a)

Since ad » 1, terms involving the factor e~
ad

are neglected, and (71)

is approximated by

Y(s)g*
N

TRiOL
(1 - e-°

T
) (72)
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Fig. 9 — Measured step response of delay network.

in the frequency range
|
s

|
« a. Hence, in this limited frequency range

the transfer function of the delay network becomes

Vi (s)^K-ll+ ' Vita

V ^ TRxa)
,
NR2 -.r

Vi
'"' —

V" ' TRia/ ' TRia

which is a constant-delay, all-pass characteristic for

TRia T

(73)

(74)

An exact analysis of the circuit of Fig. 7 indicates that (73) is valid

at low frequencies and that, by making the gain of the upper path, K,

a frequency-dependent function, the constant-delay characteristic can

be obtained over essentially the entire interval
|
w

|
< Nuo/2. The meas-

ured step response of the delay network is illustrated in Fig. 9. The N-

capacitor element was constructed using a 64-contact rotary switch

(d/r ^ 0.61) motor driven at a speed of 60 rps. Capacitors having a

value of 0.1 microfarad were connected to each of the contacts.

A useful figure of merit for any delay network is its delay-bandwidth

product. In this case, the delay is T seconds. The bandwidth is limited

by that of the low-pass filter used to recover the output signal from the

sampled data. This bandwidth cannot be greater than 1/2t cps, and

Nt = T, so that

N
(delay) (bandwith) =-^- (75)
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5.2 Narrow-Band Band-Pass Filler

If the component networks in the iV-path sampled-data networks have

a low-pass characteristic with bandwidth small compared to a>o , the

transfer function, F(0,ju), appears as a sequence of narrow passbands

centered at multiples of w , as previously noted. Consequently, this

scheme is useful for the realization of highly selective band-pass niters.

When only a single passband is required, the realization can be accom-

plished with a minimum value ofN = 3, since the transfer function rela-

tion is valid for
|
w

| ^ (N/2)u>o • The band-limiting filter required at

the output can also provide a low-frequency cutoff, so that the passband

centered at zero frequency can be eliminated; the resulting transfer func-

tion is

T(jw) = 1 (^-
2

)
\aiH(jco - jm) + afHijco + jco )] , (76)

where

% = e
ilT'THdl-di)

This result is similar to the low-pass to band-pass transformation dis-

cussed in Section 3.1.

Since the band-pass characteristic is simply a frequency translation of

a low-pass characteristic, it has arithmetic symmetry about the center

frequency. Another advantage of this realization technique is that the

filter can be easily tuned without altering the shape of the characteristic.

The tuning is accomplished simply by changing the frequency of the

timing source that controls the switching rate.

Implementation of the transfer function of (76) with series-sampling

switches would require a current source at the input and negligible load-

ing at the output. Analysis of the more practical circuit of Fig. 10, in-

cluding source resistance, Ri , and load resistance, R2 , requires a some-

what different approach. Details of this analysis are carried out in

Appendix B. The resulting transfer function is again a frequency-trans-

lated version of a low-pass characteristic:

T(jo,) = |4^T =^ taW« -M + «*G0" + Ml (77)
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•i-j

Fig. 10 — Practical circuit for realization of narrow-band filter characteristics.

The low-pass characteristic, G(j<»), is given by the voltage transfer ratio

of one of the component networks operating between a source resistance,

RiT/di , and a load resistance, R2T/d2 , as shown in Fig, 11.

A highly selective narrow-band filter using this scheme with N = 4

was constructed, using silicon diode input and output sampling switches

controlled by two transistor multivibrator circuits. The center frequency

of the filter was set at 25 kc. The low-pass component networks were

three-section RC ladder networks with a bandwidth of approximately

3 cps. The Q-factor of a resonant circuit with the same bandwidth and

center frequency would be greater than 4000. The selectivity of the

sampled-data filter is even greater than the resonant circuit having this

Q-factor, since the roll-off rate is greater. The measured frequency-

response data and equivalent low-pass network are shown graphically

in Fig. 12.

o +

rV£ V2 (0>)

Fig. 11 — Equivalent low-pass network.
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5K 15K IOOK

SMF \fiiF 0.2// F:

-25

\

f = 25 KC

\
\

I

/
(V

-40 -30 -20 -10 10 20 30 40
FREQUENCY IN CYCLES PER SECOND

Fig. 12 — Frequency response and one of the constituent equivalent low-pass
networks for sampled-data filter.

VI. CONCLUSION

The time-varying network configuration described in this paper ex-

hibits several properties of both theoretical and practical significance.

A general input-output relation for the JV-path structure has been

derived. With the introduction of band-limiting restrictions, this rela-

tion can be expressed by a transfer function that is valid over a fre-

quency band directly proportional to N, the number of parallel paths.

In some special cases, however, band-limiting restrictions are unneces-

sary.

Several useful properties of the transfer function are maintained when
the modulation is restricted to a type readily implemented by conven-

tional switching techniques. The case where the modulators are replaced

by series-sampling switches is examined in detail.

An important practical feature of the realization techniques discussed
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lies in the fact that network characteristics can be controlled by chang-

ing the modulation functions rather than by changing circuit element

values. Hence, the techniques are readily adaptable to electronic or

other automatic methods of control.

APPENDIX A

Determination of the Jump Modulation Function from a Prescribed Set of

Fourier Coefficients.

The inversion of (40) could be accomplished by straightforward appli-

cation of matrix methods, however the particular form of p(t) affords a

simple explicit expression for the elements of the inverse matrix. Note

that the R functions comprising p(t) in (40) form an orthogonal set, so

that

j\(t)w\t- (r -l)|]*=|pr . (78)

Hence,

Vr = | f £ Pm e^" T)tw \t-(r- 1) £] dt.

After interchanging summation and integration (79) becomes

r> «. r r(Tlli)

Vr = lT. Pm e*
MT)

dt

. mir

_ p V"» p -j(mrlR) tl j(2irlR)mr

m— =o
'" mir

The values of Pm are not independent. From (42), it is seen that

m + kR

Now (80) can be written as a finite sum over m:

-j(mrlR) • WITT

r/2 e sin -p .

Vr = R 2-, Pm e 2-i 7
_|_ 7„pn 2 >

\°*>
m^Rl2 7T <t=-== (m + kR) 2

where the prime on the summation over m is taken to mean that when

R is even, the end terms of the series (m = ±22/2) are added with half

(79)

(80)
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weight to avoid duplication in the sum over k. The series in ft is summable

and can he shown to be equal to

Em wur z(ttor\ /on «.

7 7p\o = -&r esc - ). (83)
fc—« (m + £ft)" .ft- \ ft /

Substitution of (83) into (82) gives

rnir

pr - £' e-
i(mr/K) —5- e

**"* )rmPm . (84)
m—«/2 . W17T

This expression is written in the two forms of (43) and (44) for the cases

of ft odd and even respectively.

APPENDIX B

Equivalent Low-Pass Characteristic for Sampled-Data Realization of Band-

Pass Filter

Referring to Fig. 10, we sec that the following constraints are imposed

:

•

(t \
ci(0 — V„i(t) / x

ill

(85)

Ut) = -^ g»(0 ;

/fl m—oo

•[Eiijw - jmoo) - Vniijw - jmuo)], (86)

/-(*)-i t Q«e-'
(w2'/T)(B"1)T

^-2(j«-jWi«o).
il2 m— oo

Representing the component networks in terms of open-circuit im-

pedance parameters,

V*i(jw) = Zii(jo)I„i(ju) + Zw(ju)Irt(jto),

(87)
I «i(ju) = Z2i(jo)Ini(jf>) + z&(]<a)Ini(i<a).

Substitution of (80) into (87) results in infinite-order difference ('(illa-

tions in Vniijo}) and r„>0V) of the type normally encountered with peri-

odically time-varying networks. However, the fact that the component
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networks are designed to have very narrow-band characteristics affords

a considerable simplification of the equations.

If

| *,(*») |££0 for |«|^|, (88)

then

I
Vmija)

| £
for | co

|
^|°. (89)

! 7i(j.) I
^ o

The relations (88) and (89) permit the elimination of all terms except

?n = in the sums involving V„i(j<a) and V„2 (jta). Hence, for
|
w

| ^
wo/2,

V A I ft m

221
-
1 PoV n y + (l + |

2
Qo) F„2 =

V Ri 7
(91)

S-
1 E P»eW(m2

*/r)("-,,r
l?iOVo - imco)

,

where

P _ di n - di
ro —

yp, Vo — y,

Eliminating V„i from (90),

r

where

VAju) = =- G(i«) Z Pme
-y(m2" r)(n-1)T

^i(ico - jtocuo)
, (92)

ttl m

T
Zl\R J

''./-' , —- „ /

A
Rn

• <93 >

^22 + —

T

-
)
— 212221

/ , ftT\ / , R*T\
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The output voltage of the JV-path configuration is given by

,v

v{t) -£»»(0«.(0.
71=1

.v
(94)

V,(ju>) =ZE Qfi-W^-^VntiJa - iZcoo).
„=1 /=_=,

Substituting (92) into (94),

K.(«-J£zw,.«-jliH-,a,Ml*
, %

r/i n-i /.». (95)

•(?0« - jla )Ei[ju - j(l + m)«o]

and, summing over n as was done in (9),

VMu) = %2 £ <M?(i<" - jU) £ Pk~iEi(j<* - jkNw) . (96)

Now, if Ei(ju) is band-limited such that

|J?i(*0|£gO for |«l^y? (97)

and FaO'to) is followed by a low-pass filter with cutoff at a> = Nu /2,

&(>>) rfi I

Now, suppose that the low-pass filter is replaced by a band-pass filter

that selects only the passband corresponding to / = ±1. Then,

E*,.s Nd

where

g (i«) = -^ [aiG(ju -M + atG(j<* + jcoo)]

,

(99)

7T(fi

_ /(t/DWH,) I £_

r

The transfer function of (99) is equivalent to that of (76), where the

low-pass function, G(jo)) in this case, is simply related to the low-pass

characteristic of one of the component networks. Examination of the

relation (93) shows that G(ju) is simply the voltage transfer ratio of

one of the component networks operating between a source resistance of

Ri(T/di) and a load resistance R2(T/d2 ), as shown in Fig. 11. This
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equivalent low-pass network provides the basis for synthesis of the pre-

scribed band-pass characteristic.
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