It is a soft compound - feels comparable to thick polythene tubing. You can cut through it with a scalpel (though applying a soldering iron to the blade speeds things up - it hardens and crumbles to granules at higher temps.
I've now reworked 17 failed strips and am absolutely certain that ESD is the only plausible explanation.
All failed strips had either one chip , or a pair of chips which shared a single connection fail, and the failures were all low-resistances to ground (5 to 100R) on a single pin.
In every case, the dead pin was either connected to a trailing wire, on the end of the PCB where there is a pad with minimal coating, or adjacent to a large bubble hole at the edge of the strip - all prime candiates for the easiest discharge path to the sharp edge of the metal mould about 2mm away
My best guess is that the strip is peeled out of the mould starting at one end, which builds up a charge, and discharge occurs towards the other end of the PCB, which is still in the mould.
The failures at the locations of the edge bubbles is the "smoking gun" as this is the easiest discharge path.