The problem with TVS diodes is, they are not precision devices. The clamping voltage depends on current and unit variation. This is why the downstream components need to be rated higher. If your input is x volts, and you pick nominal clamping voltage of, say, 1.25*x to ensure it's never unintentionally clamping, then the worst case clamping is at least 1.5*x or maybe even closer to 2*x.
The problem in automotive systems is, the voltage varies quite a lot even in normal conditions. Assuming this is a 24V automotive system, you don't want to clamp at below 30V, otherwise you'll be dissipating power in the clamp unnecessarily. (BTW, you should have a thermally coupled polyfuse to protect against long-lasting slight overvoltage.) Now, if you pick the closest
minimum guaranteed clamping voltage (with acceptable leakage figure) from 30V, the nominal clamping voltage will end up somewhere between 35-40V, and the worst-case, under load clamping will be somewhere around 45-55V. There is no easy way around this; I'd strongly consider replacing the DC/DC controller IC to something that can handle at least 60V absolute maximum.
The SMAJ26CA is at least closer: 28.9 breakdown (satisfies your 28V minimum)
For an even remotely robust system, you need to look the "working peak reverse voltage" spec, which is only 26V; it will likely conduct and leak excessively in a 24V automotive system when the engine is running, causing another set of problems (excessive heating, possibly only in some units, which may only become a problem after many hours of runtime...) . SMBJ30CA would be the lowest acceptable from that series, but then again, we are back to 48.4V max clamping voltage, way over the abs. max. rating of the IC. I think there is no way out by just replacing the TVS with another.