

United States Patent (19)
Wollan et al.

USOO5854939A

11 Patent Number: 5,854,939
(45) Date of Patent: Dec. 29, 1998

54). EIGHT-BIT MICROCONTROLLER HAVING
A RISC ARCHITECTURE

75 Inventors: Vegard Wollan, Flataasen; Alf-Egil
Bogen; Gaute Myklebust, both of
Trondheim, all of Norway; John D.
Bryant, Los Altos, Calif.

73 Assignee: Atmel Corporation, San Jose, Calif.

21 Appl. No.:745,098

22 Filed: Nov. 7, 1996
(51) Int. Cl." .. G06F 13/00
52 U.S. Cl. 395/800.41; 395/800.01;

395/800.31; 395/800.32: 395/800.33
58 Field of Search 395/800.01, 800.02,

395/800.31, 800.32, 800.33, 800.41; 364/DIG. 1

56) References Cited

U.S. PATENT DOCUMENTS

4,467,447 8/1984 Takahashi et al. 364/900
4,649,511 3/1987 Gdula 364/900
4,831,514 5/1989 Turlakov et al. 364/200
5,113,369 5/1992 Kinoshita 395/325
5,301,285 4/1994 Hanawa et al. ... 395/375
5,301,340 4/1994 Cook 395/800
5,333,284 7/1994 Nugent 395/375
5,349,693 9/1994 Matsushita 395/800
5,428,763 6/1995 Lawler 395/800
5,450,610 9/1995 Watanabe et al. ... 395/800
5,465,332 11/1995 Deloyeet al. 395/842
5,490,256 2/1996 Mooney et al. 395/375
5,548,766 8/1996 Kaneko et al. 395/775
5,590,369 12/1996 Burgess et al. m 395/800

OTHER PUBLICATIONS

Lin, “Bldirectional FIFO In The Processor-To-Peripheral
Communication”, pp. 131-136.
Hitachi H8/310 Microcontroller Architectural Overview,
Sep. 1989.

Intel MCS(R) 51 Microcontroller Overview (no publication
date).
Intel 8XC151SA/SB High-Performance CHMOS Micro
controller Product Preview, Mar. 1996.

Microchip Technology PIC16C5X Data Sheet, 1995.
Texas Instruments TMS370CX1X 8-Bit Microcontroller
Product Description, Mar. 1996.

Primary Examiner-Larry D. Donaghue
ASSistant Examiner-DZung L. Nguyen
Attorney, Agent, or Firm Thomas Schneck; George B. F.
Yee

57 ABSTRACT

An eight-bit RISC based microcontroller includes an eight
bit register file having a dedicated arithmetic logic unit
(ALU), in addition to a general purpose eight-bit ALU. The
register file further includes means for combining a pair of
registers to provide a logical Sixteen-bit register for indirect
addressing. The dedicated ALU is a sixteen-bit ALU which
provides certain arithmetic functions for the register pair,
thus alleviating the computational burdens that would oth
erwise be imposed on the general purpose eight-bit ALU. A
further feature of the invention is the inclusion of a paging
register which is combined with the contents of the logical
Sixteen-bit register to provide an even greater addressing
range. Yet another feature of the eight-bit microcontroller of
the present invention is the means for directly reading and
Writing to any bit position within the register file with a
Single instruction. This avoids having to perform various
load, Shift and/or masking operations needed by prior art
microcontrollers.

20 Claims, 10 Drawing Sheets

PROGRAM
CONTER

RSSSM MEMC3
XTAI -
RESET -- INSTR

REGISTER
REGISTER
FE

CONTROL
INSTR
ECOER

CONTRO

} INES

e-TIXER

JART

NT
UNIT

et Prom EEPROM

U.S. Patent Dec. 29, 1998 Sheet 1 of 10 5,854,939

PROGRAM

|
COUNTER

PROGRAM
XTAL - MEMORY

RESET -> INSTR
| REGISTER

--- 16
INSTR.

DECODER

14' --

CONTROL
LINES l

STATUS REG.

8-BIT DATABUS

rt on /6 DATA REGISTERS

PORT DRIVERS

------------- ------------------ -
S10

:

U.S. Patent Dec. 29, 1998 Sheet 2 of 10 5,854,939

V, D- ---------------------- -
o Re
; : Y " :
v. e. R27/R26(x) - - - - - - - - - ad X

5 104

V c. R29/R28(y)
SELECT ...

R31/R30(z)
INCR
SELECTP ADD
DECR. NY 7.rr - ENABLE
SELECT

N--/“ O SUB
ENABLE

MUX
SELECT

FIG. 2A

U.S. Patent Dec. 29, 1998 Sheet 3 of 10 5,854,939

- Vo Dr
s

a as a sa

O

V s Pir R27/R26(x)
V c. R29/R28(y)
SELECT ...i.

R31/R30(z)
INCR -
SELECTP
DECR SEECTP

ADIW
SBIW
LDD
STD

--> MUX SELECT (LDD,STD)
ADD ENABLE (ADIW.LDD,STD)
SUB ENABLE (SBIW)

MP op-code O MUX SELECT 'YE:op code- FIG. 2B

U.S. Patent Dec. 29, 1998 Sheet 4 of 10 5,854,939

-

'o - R0
prior

O

V 5 Pr R27/R26(x)
104

V o: R29/R28(y)
SELECT ...

R31/R30(z)
INCR - SELECTP:

DECR SEECTP

MUX
SELECT

LD (w/ update)
ST (w/ update)

INCR SELECT (Post-incr)
DECR SELECT (Pre-decr)
ADD ENABLE

MUX SELECT

LD (w/o update)

Cd MUX SELECT FIG. 2C

U.S. Patent Dec. 29, 1998 Sheet 5 of 10 5,854,939

i-O R31 SELECT -,
- R30 SELECT - -
ir -O R29 SELECT -
i- Ko R28 SELECT ------------- -
ir. -Co R27 SELECT -.

i- -go R26 SELECT -'

Y---------. Co Z SELECT

Y Co y SELECT

- - - - - - - - - - - Ko X SELECT

ir -go R SELECT

DATA8 IN ENABLE Dr.
DATA8 OUT ENABLE Dr.

DATA16 IN ENABLE Dr.
DATA16 OUT ENABLE D--------------.......

FIG. 3A

U.S. Patent Dec. 29, 1998 Sheet 6 of 10 5,854,939

ADIW
SBIW

C x,y,z SELECT
CY DATA16 IN ENABLE
CY DATA 16 OUT ENABLE

IJMP DZ SELECT
-cod ICAL op-code DATA 16 OUT ENABLE

R9 ... R31 SELECT

R2, ... R31 SELECT

DATA8 OUT

x,y,z SELECT (LD)
y,z SELECT (LDD)

R2, ... R31 SELECT
DATA8 IN
DATA16 OUT
DATA16 IN (Pre-decr, Post-incr)

R2, ... R31 SELECT

DATA8 IN
x,y,z SELECT (LD)
y,z SELECT (LDD)

DATA 16 OUT
DATA16 IN (Pre-decr, Post-incr)

FIG. 3B

U.S. Patent Dec. 29, 1998 Sheet 7 of 10 5,854,939

:
: BLD BIT : - BST BIT

SEE&f Phi P SEECs
|
| :

:

BLD BST
REGISTER REGISTER
SELECT SELECT

O
:

- - - - - - - - - - - - - - - - - |--

2

STATUS
REGISTER 8

FIG. 4A

U.S. Patent Dec. 29, 1998 Sheet 8 of 10 5,854,939

BLD BIT - - BST BIT
SELEC'? P P SEE6

BLD BST
REGISTER REGISTER
SELECT SELECT

12

STATUS
REGISTER

BST

BST BIT SELECT
BST REGISTER SELECT

BLD

BLD BIT SELECT
BLD REGISTER SELECT

FIG. 4B

U.S. Patent Dec. 29, 1998 Sheet 9 of 10 5,854,939

x 23.16 y (23.16) Z 23.16)

x 15.0
X REGISTER

15.0 y RegistER y IISO)
Z 15.0)

Z REGISTER

16 16 16

24 24 24

x 23.0 y (23.0 Z 23.0

FIG. 5

U.S. Patent Dec. 29, 1998 Sheet 10 of 10 5,854,939

8-BIT DATABUS

12
A REGISTERS /6 DAT

-------------------------------- - Vcc
PROGRAM
COUNTER

ROGRAM MEMORY

XTAL -
RESET -- INSTR.

REGISTER TIMING |
--- 16 CONiroL

INSTR.
DECODER

U TIMER H
CONTROL
LINES

(15.0)
20

24 13

22

5,854,939
1

EIGHT-BIT MICROCONTROLLER HAVING
A RISC ARCHITECTURE

TECHNICAL FIELD

The present invention relates to microcontrollers in
general, and more specifically to a microcontroller executing
a reduced instruction Set.

BACKGROUND ART

Present Submicron CMOS technology allows for the
integration of complex microcontroller architectures onto a
chip, while leaving enough Silicon area to implement com
plex memories and peripheral logic. Design architectures
and methodologies most commonly used in high-end 32
and 64-bit RISC machines can be efficiently utilized and
adopted in low cost 8-bit microcontroller Systems. Having
Such powerful yet cost effective microcontrollers, the total
integration level of Systems continues to increase. More
efficient programs can be executed in the hardware
architecture, and more hardware functions can be integrated.
The RISC architecture has gained in popularity during the

recent years. Most notably is the Power PC(R), jointly devel
oped by Apple Computer, IBM, and Motorola. Although
there is no agreement as to the defining characteristics of
RISC processors, there are common properties among the
different varieties of RISC architectures: (1) most instruc
tions execute in one cycle; (2) separate and simple load/store
instructions often execute in two cycles; (3) instruction
decoding is typically hardwired rather than being
microcoded, resulting in faster execution times; (4) most
instructions have a fixed format, thus simplifying instruction
decoding; (5) Smaller instruction sets and fewer addressing
modes; (6) data paths are highly pipelined, providing a high
degree of processing concurrency; and (7) large high-speed
register Sets (also known as register files) to avoid excessive
data transfers to and from slower system RAM.

Several Semiconductor manufacturers produce microcon
trollers. Texas Instruments, for example, offers the
TMS370CX1X series of 8-bit microcontrollers. Although
these microcontrollers do not employ a RISC architecture,
they do provide a RAM (128 or 256 bytes) which can be
used either as RAM or as a set of general purpose registers.
Motorola offers the MC6805 family of 8-bit microcontrol
lers which employ a dual-purpose RAM similar to the Texas
Instruments devices. Microchip Technology offers the
PIC16C5X family of microcontrollers. These microcontrol
lers use the Harvard dual-bus architecture where data and
program instructions have Separate memories and buses.
The PIC16C5X employs a register file which is shared with
the system RAM. The PIC16C5X uses one level instruction
pipelining, as one instruction is being executed, the next
instruction is pre-fetched from program memory. Since the
RAM doubles as registers, there is no real Set of internal
registers. Since all memory is present as a Static RAM, there
is a reduction in performance where register operations are
involved.
AS noted above, fast design cycles are an important

consideration in designing with microcontrollers. There is
no doubt as to the importance of the role that Software playS
in computer-based Systems. The utility of a microcontroller
design, therefore, is directly related to the Specification
interface between programmerS and hardware designers,
namely the instruction set of the microcontroller. The
instruction Set should be complete in the Sense that any
computable function should be implementable in a reason
able amount of program Space. The instruction Set should be

15

25

35

40

45

50

55

60

65

2
efficient in that frequently used functions should be imple
mentable with relatively few instructions.

It is therefore desirable to provide a microcontroller
design which provides a complete and efficient instruction
Set for the applications Software developer.

SUMMARY OF THE INVENTION

The present invention is a microcontroller having an 8-bit
RISC architecture. An 8-bit data bus provides a data path
among a RAM memory Store, a register file, a general
purpose eight-bit arithmetic logic unit (ALU), and a status
register. The microcontroller implements the Harvard
architecture, providing a program memory Store Separate
from the RAM Store and a program data bus separate from
the data bus.
The register file includes a plurality of eight-bit registers.

Certain of the registers in the register file can be combined
to provide logical 16-bit registers. A logical 16-bit register
provides efficient address calculation and is used as an
indirect address pointer into data memory and program
memory. Whether for data or for program memory, a 16-bit
address Space greatly increases the flexibility and utility of
the microcontroller by increasing both the program address
Space and the data address Space. In a preferred embodiment
of the invention, the register file provides three pairs of 8-bit
registers which can be accessed (i.e. read/write) as three
independent logical 16-bit registers.
To further enhance the benefits of 16-bit addressing, a

Special Second arithmetic logic unit dedicated to the register
file is utilized. The second ALU contains a 16-bit adder,
providing 16-bit arithmetic operations for the logical 16-bit
register. The second ALU can store the 16-bit result back
into the logical 16-bit register. Additionally, the 16-bit result
can Serve as an address. Thus, the presence of the Second
ALU provides efficient 16-bit address calculations without
burdening the general purpose eight-bit ALU which would
reduce the operating Speed of the device.
A further eXtension of the logical 16-bit register provided

in the register file is the use of an 8-bit RAM paging register.
The eight bits of the RAM paging register are logically
concatenated with the sixteen bits of the logical 16-bit
register to provide a logical 24-bit address. This feature
offers an unprecedented range of addressing for a micro
controller whose underlying architecture is fundamentally
an eight-bit design. In particular, the paging register orga
nizes memory as 256 pages of 64K (64 * 1024) bytes of
RAM, each 64K page being referenced by the paging
register. In a preferred embodiment of the invention there are
three paging registers, one for each of the three logical 16-bit
registers provided by the register file.

Abit store allows for the transfer of a one bit datum to and
from an arbitrary bit position among the registers of the
register file. In a preferred embodiment, the bit Store is
located in the Status register. This bit transfer feature allows
for the direct manipulation of register bit positions without
having to perform numerous and otherwise time-consuming
register shift operations. AS is typical in many microcon
troller applications, the individual bits comprising a one
byte datum have Significance independent of the other bits.
The instruction Set of a prior art microcontroller typically
includes shift instructions to provide left- and right-shifting
of a register. Thus, access to a bit in a given bit position of
a register is achieved by Shifting the bit, either to the right
or to the left. This is a destructive operation, requiring that
the register contents be Saved if the original data is to be
preserved. In addition, the operation is time consuming and

5,854,939
3

requires a number of program instructions to implement.
The bit transfer operations of the present invention offer a
more time efficient and leSS space consuming means for
accessing arbitrary bit positions.
A compare-with-carry instruction provides 16-bit

enhancement of the eight-bit registers comprising the reg
ister file. This feature of the instruction set provides an
efficient method for implementing comparisons of 16-bit
quantities in an eight-bit environment, thus further enhanc
ing the utility of the eight-bit microcontroller of the present
invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a schematic layout of the microcontroller of
the present invention.

FIGS. 2A-2C depict an internal representation of the
register file used in the microcontroller of FIG. 1.

FIGS. 3A and 3B illustrate the organization of the regis
ters in the register file shown in FIGS. 2A-2C.

FIGS. 4a and 4B show the bit store mechanism of the
present invention.

FIG. 5 illustrates the formation of a 24-bit logical address
using paging registers in accordance with the present inven
tion.

FIG. 6 depicts a diagram of the microcontroller of FIG. 1,
incorporating the paging registers shown in FIG. 5.

BEST MODE OF CARRYING OUT THE
INVENTION

With reference to FIG. 1, the microcontroller 10 of the
present invention is designed around an eight bit data bus 12
Structure. The data bus provides a data path for the various
components comprising the microcontroller. An on-board
SRAM serves as a general data store. An eight bit REGIS
TER FILE, separate from the SRAM, provides a set of high
Speed eight bit memory Stores for the microcontroller.
A general purpose arithmetic and logic unit ALU-1 is

coupled to the REGISTER FILE to provide arithmetic
computations for data Stored in the registers. The output of
ALU-1 is coupled to both the eight bit data bus 12 and to a
STATUS REGISTER. Various status bits comprising the
STATUS REGISTER are set according to the results of
ALU-1. Typical bits contained in the STATUS REGISTER
include, but are not limited to: a carry flag, a Zero flag; a
negative flag, a two's complement overflow indicator; a sign
bit, equal to the exclusive-OR between the negative flag and
the two's complement overflow flag, and an interrupt enable
bit. The STATUS REGISTER is coupled to the data bus 12
to allow read/write access to the Status bits. Additional
components coupled to the data bus 12 include: a STACK
POINTER used for subroutine calls/returns and for interrupt
handling, a timer; an interrupt circuit; timing and control
circuitry; an EEPROM; and a UART I/O DATA REGIS
TERS driven by PORT DRIVERS provide an I/O path 18 for
the microcontroller.

A direct-address bus 16 provides direct access to the
SRAM locations and to the REGISTER FILE during pro
gram execution. An indirect-address buS 14 provides indi
rect addressing. The indirect-address buS 14 includes a
means for receiving an address from the REGISTER FILE,
namely the bus interface 14' which couples the REGISTER
FILE to the indirect-address bus 14 for transmitting an
address either to the SRAM or to a PROGRAM COUNTER.
The instruction execution components of the microcon

troller 10 include a PROGRAM COUNTER which is

15

25

35

40

45

50

55

60

65

4
coupled to a PROGRAMMEMORY. A program instruction
specified by the PROGRAMCOUNTER is fetched from the
PROGRAM MEMORY and fed into an INSTRUCTION
REGISTER. From the INSTRUCTION REGISTER, the
program instruction is decoded by an INSTRUCTION
DECODER which generates various control signals. The
control signals are carried by CONTROLLINES to the other
components of the microcontroller 10 to perform operations
in accordance with decoded program instructions. The buses
coupling the instruction execution components are collec
tively referred to as the program bus. The arrangement of a
program memory Store that is separate from the data Store
and the use of a program bus that is separate from the data
bus 12 is commonly referred to as the Harvard architecture.
As noted above, the REGISTER FILE consists of a

plurality of eight bit registers. In a preferred embodiment of
the invention, there are thirty-two eight bit registers. It is
pointed out, however, that the microcontroller will operate
equally well with more or fewer registers in the REGISTER
FILE. The general purpose arithmetic and logic unit ALU-1
is an eight bit operator, providing eight bit arithmetic opera
tions between registers selected from the REGISTER FILE.
The output of ALU-1 can be fed back to a register in the
REGISTER FILE via the data bus 12. As will be discussed
in greater detail below, Some of the eight bit registers can be
combined in pairs to provide logical Sixteen bit registers. In
the preferred embodiment, three pairs of eight bit registers
provide three logical Sixteen bit registerS X, Y, Z, as shown
in FIG. 1.

Turning to FIG. 2A, the REGISTER FILE of the present
invention includes register circuitry 100 which provides
thirty-two eight bit registers R0–R31. As will be described
below, the register circuitry 100 is capable of provisioning
the last six registers R26-R31 as three pairs of logical
sixteen bit registers R27/R26 (X), R29/R28 (Y), R31/R30
(Z). A common bus interface consisting of two sixteen-line
data buses 102, 104 provide respectively a data-in and a
data-out bus for the registers.
The sixteen bit registers provided by the REGISTER

FILE are used as indirect address register pointers for
SRAM and program-space addressing. AS Such, certain
Sixteen bit arithmetic operations, Such as post-increment and
pre-decrement, are needed for address calculations.
Although it is possible to use ALU-1 to provide sixteen bit
arithmetic for the Sixteen bit registers, Such operations
would be quite inefficient because of the eight bit design of
ALU-1.
The REGISTER FILE shown in FIG. 2A therefore

includes a Secondarithmetic and logic unit ALU-2 dedicated
to the REGISTER FILE to facilitate sixteen bit computa
tions involving the logical Sixteen bit registers. The arith
metic and logic unit ALU-2 is a Sixteen bit design, custom
ized to provide Specific operations typically required of
indirect address pointers. The ALU-2 has a first input which
is fed by the data-out bus 104 of the REGISTER FILE. The
ALU-2 has a second input which is fed by a selector 110.
The selector 110 selects a numeric value from among three
choices: a numeric value of -1, a numeric value of +1, and
a constant V. The output of ALU-2 feeds back to the X, Y,
Z registers on the data-in buS 102, allowing for the contents
of the registers to be updated. A mux 114 is coupled to the
bus interface 14 of the REGISTER FILE. One input of the
mux 114 is coupled to the output of the ALU-2, while a
second input of the mux is coupled to the data-out bus 104.
This arrangement allows the mux 114 to selectively output
data either from ALU-2 or from the register circuitry 100.
The following control Signals are pertinent to the opera

tion of the discussed features of the REGISTER FILE. They

5,854,939
S

include: ADD ENABLE, SUBENABLE, MUX SELECT, V
SELECT, V-V, INCR SELECT, and DECR SELECT
These signals are carried by various CONTROL LINES
originating from the INSTRUCTION DECODER. Opera
tion of the REGISTER FILE in terms of these control signals
will be discussed below with reference to the program
instructions of the microcontroller of the present invention.

The internal organization of the register circuitry 100
illustrated in FIG. 2A is shown in the block diagram of FIG.
3A. In one embodiment of the invention, thirty-two registers
R0–R31 are provided, each having a set of eight bit output
lines 121 and a set of eight bit input lines 123. The actual
number of registers provided is not critical to the invention.
A set of latches 120-126 is coupled to selectively latch data
into and out of the registers. These latches provide the input
and output data bits bis . . . bio, bos...boo of the common
bus interface 102, 104 shown in FIG. 2A. Data transfer
between the eight bit registers R0–R31 is provided through
the data-in latch 122 and the data-out latch 126, as bits
bi-bio and boy-boo respectively.

For the logical Sixteen bit registerS X, Y, Z, additional
data-in and data-out latches 120, 124 are provided. The X
register consists of the register pair R27:R26, the Y register
consists of the register pair R29: R28, and the Z register
consists of the register pair R31:R30. The data-out latches
120, 122 latch the contents of one of the sixteen bit registers
onto the output bits bos-boo of the common bus interface
102, 104, while the data-in latches 124, 126 latch in data
appearing on the input bits bis-bio. The data-out latch 120
is coupled to the output lines 121 of the hi-byte registers
R27, R29, and R31. Similarly, the data-out latch 122 is
coupled to the output lines 121 of the lo-byte registers R26,
R28, and R30. The data-in latches 124, 126 are coupled in
the same manner, namely the data-in latch 124 is coupled to
the input lines 123 of the hi-byte registers R27, R29, and
R31 while the data-in latch 126 is coupled to the input lines
123 of the lo-byte registers R26, R28, and R30.
The following control Signals are pertinent to the opera

tion of the discussed features of the register circuitry 100.
They include: DATA16 IN, DATA16 OUT, DATA8 IN,
DATA8 OUT, R0 SELECT-R31 SELECT, XSELECT, Y
SELECT, and ZSELECT Operation of the register circuitry
100 in terms of these control signals will be discussed below
with reference to the program instructions of the microcon
troller of the present invention.

The discussion will now turn to another feature of the
eight bit microcontroller of the present invention. Recall
from the discussion above, that prior art techniques for
loading or Storing an arbitrary bit position of a register
requires register shift and/or register masking operations,
resulting in less efficient code and increased code size. In
addition, this is a destructive operation, requiring that the
register contents be Saved if the original data is to be
preserved.

Refer to FIG. 4A for another view of the internal orga
nization of the REGISTER FILE of the present invention,
detailing additional components in the REGISTER FILE
which provide arbitrary access to a bit from among the
registers R0–R31. Logically, each register has a 1:8 multi
plexer 130 wherein each of the eight outputs of the multi
plexer is coupled to a bit in the register. Thus, a bit can be
loaded into any bit position in the register by latching the bit
into the one-bit input of the mux 130 and transferring the
muX input to one of its eight outputs. Each register further
has an 8:1 muX 132 wherein each of its eight inputS is
coupled to a bit in the register. Any bit position in the register

15

25

35

40

45

50

55

60

65

6
can therefore be copied out by Selecting the muX input
corresponding to the bit of interest.

Continuing, the REGISTER FILE logically includes a
1:32 mux 134 and a 32:1 mux 136. Consider first the 1:32
mux 134. This mux has a one bit input taken from the
eight-bit data bus 12. The input can be transferred to any one
of its thirty-two outputs. Each of the thirty-two outputs, in
turn, is coupled to the input of one of the 1:8 mux's 130, thus
providing a path from the data buS 12 to any bit position in
any of the registers R0–R31 in the REGISTER FILE.
Consider next the 1:32 mux 136. The output of each of the
8:1 mux's 132 is coupled to one of the thirty-two inputs of
the mux 136. The one bit output of the mux 136, in turn, is
coupled to the data bus 12, thus providing a data path from
any bit position in any of the registers R0–R31 to the data
bus.
The STATUS REGISTER shown in FIG. 4A includes a bit

position for receiving and holding a one bit datum, known
as the T-bit for transfer bit. The STATUS REGISTER is
coupled to the eight bit data bus 12 to provide read/write
access to its various bits. In particular, the T-bit position is
controlled in conjunction with the 1:32 mux 134 and the
32:1 mux 136 either to receive a one bit datum from the 32:1
muX 136 over the data bus or to transfer a one bit datum to
the 1:32 mux 134 over the data bus.
The following control Signals are pertinent to the opera

tion of the features of the REGISTER FILE shown in FIG.
4A. They include: BST REGISTER SELECT, BST BIT
SELECT, BLD REGISTER SELECT, and BLD BIT
SELECT Operation of the REGISTER FILE in terms of
these control signals will be discussed below with reference
to the program instructions of the microcontroller of the
present invention.

Another feature of the eight bit microcontroller of the
present invention is an enhanced addressing capability as
shown in FIG. 5. Shown are three additional registers
external to the REGISTER FILE, namely the RAM paging
registers RAMPX, RAMPY, RAMPZ. The RAM paging
registerS operate in conjunction with their corresponding
logical Sixteen bit registerS X, Y, Z to provide a greatly
increased addressing range as compared to prior art eight bit
microcontrollers. In the disclosed embodiment, the RAM
paging registers are eight bit registers. However, this is not
critical, and it will become clear that the invention can easily
work with registers having a different bit length.

Referring to FIG. 5, a schematic representation of how the
address is built up is shown. Each of the RAM paging
registers is concatenated with its corresponding Sixteen bit
register. For example, the eight bits of the RAM paging
register RAMPX are concatenated with the sixteen bits of
the X register, to form a twenty-four bit address. In the
preferred embodiment, the eight bits of RAMPX serve as the
high order bits X23 . . . 16 of the twenty-four bit logical
address, while the sixteen bits of the X register provide the
low order bits X15 . . . 0) of the twenty-four bit logical
address. The memory model created by this arrangement is
a set of 64K byte (64 * 1024) pages, each 64K page being
accessed by an eight bit RAM paging register for a total of
256 pages.

Turn now to FIG. 6 for a description of an embodiment of
the RAM paging registers in the context of the disclosed
embodiments of the invention. Each of the RAM paging
registers RAMPX, RAMPY, RAMPZ is coupled to the eight
bit data bus 12, to receive an eight bit page reference during
program execution. A selector 11 (for example, a 3:1
multiplexer) receives the eight bits from each of the RAM

5,854,939
7

paging registers and transferS the eight bits of a Selected one
of the RAM paging registers to the output of the Selector.
The sixteen bits of the bus interface 14" of the REGISTER
FILE are concatenated with the eight bits from the selector
11 to form a twenty-four bit address which is carried by the
indirect-address bus 14.

The extended twenty-four bit addressing of the invention
allows for the use of externally provided RAM (not shown),
Since a twenty-four bit address is capable of addressing 16M
(16 * 1024 * 1024) of RAM. An external twenty-four bit
address bus 20 and an eight bit data bus 22 are included for
data access between the microcontroller and an external
RAM (not shown). In accordance with the present invention,
the REGISTER FILE, the on-board SRAM, and the external
RAM occupy the same data address space. The REGISTER
FILE occupies the first 32 address locations and the
on-board SRAM occupies the next N address locations, N
being the size of the SRAM. The remainder of the address
Space is provided by external RAM. Thus, the address range
00 to (N-1) maps to memory locations of the on-board
memory (REGISTER FILE and SRAM), while the remain
ing address range N to (16M-1) maps to memory locations
in the external RAM. For example, if the on-board memory
has a total of 64K bytes, then the on-board address range is
S00 to SFFFF (“S” signifies hexadecimal notation), while
the address range of the external RAM is S10000 to
SFFFFFF. It is noted that the amount of on-board memory
can be varied without affecting the utility or operability of
the present invention, the actual amount memory depending
upon design criteria Such as available Silicon area, device
geometries, and design rules.

In order to ensure that the on-board memory and the
external RAM are correctly accessed for a given address, a
Second selector 13 is used to transfer the address either to the
internal address bus 14 or to the external address bus 20. In

ADIW
Description: Add a constant to a logical 16 bit register L

(XR27:R26, YR29:R28), or ZIR31:R3OI).
Memory access is limited to the RAM page specified
in the corresponding RAM paging register RAMPX,
RAMPY, and RAMPZ.

Operation: L - L + K
Syntax: ADIW L, K

where: L is one of X, Y, and Z; and
K is a constant, O is K is 63

Example:
adiw X, 1 ; add 1 to the X register
adiw Z, 63 ; add 63 to the Z register

BST
Description: Store a bit from a register into the T-bit.
Operation: T-bit - Rd (b)
Syntax: BST Rd, b

where: Rd is a register, RO ... R31; and
b is the bit position, O s b is 7

Example:
; copy bit

bstra, 3 ; store bit 3 of ra into T-bit
bid r21, 6 ; load bit 6 of r21 from T-bit

BLD
Description: Load a bit from the T-bit into a register.
Operation: Rd.(b) <- T-bit
Syntax: BLD Rd, b

where: Rd is a register, RO ... R31; and
b is the bit position, O s b is 7

Example:
; copy bit

bstra, 3 ; store bit 3 of ra into T-bit
bld r21, 6 load bit 6 of r21 from Tbit

CPC
Description: Perform a compare between two registers,

15

25

8
a preferred embodiment, the selector 13 is a 1:2 mux
wherein the single MUX input is transferred to one of its two
outputs. Here, the Single input is the twenty-four bit address
line coming out of the selector 11. One of the outputs of the
selector 13 is coupled to the address bus 14, while the other
output is coupled to the external address bus 20. Upon
detecting an address within the address range of the
on-board memory, the Selector 13 is caused to transfer its
input to the address bus 14. Observe that only the low order
16 bits 15 . . . 0) of the twenty-four bit address are
transferred to the address bus 14. Conversely, selector 13
will transfer its input to the external address bus 20 upon
detection of an address within the address range of the
external memory. Any of a number of detection Schemes is
possible, all being within the ability of a designer of ordinary
skill. For example, one may OR together the high order eight
bits (bits 23 ... 0) of the twenty-four bit address, using the
result to control the selector 13. If the OR operation results
in FALSE, meaning that the address falls within the address
range of the on-board memory, then the selector 13 should
transfer its input to the internal address bus 14. If the OR
operation results in TRUE, meaning that the address is a full
twenty-four bit address, then the selector 13 should transfer
its input to the external address bus 20.

Having described the hardware details pertinent to the
features of the eight bit microcontroller of the present
invention, the discussion will now turn to the instruction Set
of the microcontroller. Firstly, the present microcontroller
Supports program instructions typical of all
microcontrollers, including arithmetic and logic
instructions, branch instructions, data transfer instructions,
and bit test and bit Set instructions. Additionally, the present
microcontroller provides instructions which are enabled by
the circuitry described above and illustrated in the figures.
Following is a Summary of these instructions:

5,854,939

Operation:

Syntax:
Example:

noteq:

IJMP
Description:

Operation:
Syntax:
Example:

ICALL
Description:

Operation:

syntax:
Example:

LD
Description:

Operation:

Syntax:

Example:

LDD
Description:

Operation:

10
-continued

taking into account the previous carry.
Rd - Rr - C
where: Rd, Rr are registers, RO ... R31;

and C is the carry bit;
CPC Rd, Rr

; compare r3:r2 with r1:rO
cp r2, ro ; compare low byte
cpc r3, r1 ; compare high byte
brine noteq ; branch if not equal

branch destination
nop ; (do nothing)

Indirect jump to the address pointed to by the
logical 16 bit Z register, ZR31:R30.
PC15 ... O s- Z15 ... O
IJMP (no operands)

; initialize jump address
mov r30, r0 ; copy r() into r30
mov r31, r1 ; copy r1 into r31
imp ; jump to instruction pointed

: to by r31:r30

Indirect call of a subroutine pointed to by the
logical 16 bit Z register, ZR31:R30.
STACK s- PC - 1
SP s- SP - 2

PC15 ... O s- Z15 ... O
ICALL (no operands)

; initialize subroutine address
mov r30, r0 ; copy r() into r30
mov r31, r1 ; copy r1 into r31
icall ; jump to instruction pointed

: to by r31:r30

Load one byte indirect from a memory location to a
register, the memory location being pointed to by
a logical 16 bit register L (XR27:R26),
YR29:R28), or ZIR31:R30). The logical
register may be post-incremented or
pre-decremented. Memory access is limited to the
RAM page specified in the corresponding RAM paging
register RAMPX, RAMPY, and RAMPZ.
1: Rd - (L) L: unchanged, OR
2: Rd - (L)
L - L + 1 L: post-incremented, OR

3: L s- L. - 1
Rd - (L) L: pre-decremented

LD Rd, L L: unchanged
LD Rd, L- L: post-incremented
LD Rd -L L: pre-decremented
where: Rd is a register, RO ... R31: and

L is one of X, Y, and Z

c1r r27 : clear X high byte
1dir26, $20 ; set X low byte to $20
1d rO, X- ; load rO with contents of

; memory location $20
; (X post-incremented)

1d r1, X ; load r1 with contents of
; memory location $21
; (Xunchanged)

1d r2, -X ; load r2 with contents of
; memory location $20
; (X pre-decremented)

Load one byte indirect, with displacement, from a
memory location to a register, the memory location
being pointed to by a logical 16 bit register L
(YR29:R28), or ZIR31:R30) and offset by a
displacement value. Memory access is
limited to the RAM page specified in the
corresponding RAM paging register RAMPY, and
RAMPZ.

Rd - (L + q)

5,854,939
11 12
-continued

Syntax: LDD Rd, L + q
where: Rd is a register, RO ... R31;

L is one of Y and Z; and
q is a displacement, O is q S 63

Example:
c1r r29 : clear Y high byte
1dir28, $20 ; set Y low byte to $20
1dd r4, Y + 2 ; load r1 with contents

; of memory location $22
SBW

Description: Subtract a constant from a logical 16 bit register
L (XR27:R26), YR29:R28, or ZIR31:R30).
Memory access is limited to the RAM page specified
in the corresponding RAM paging register RAMPX,
RAMPY, and RAMPZ.

Operation: L - L - K
Syntaxt SBIW L. K

where: L is one of X, Y, and Z; and
K is a constant, O is K is 63

Example:
sbiw X, 1 ; subtract 1 from the

; X register
sbiw Z, 63 subtract 63 from the

; Z register
ST

Description: Store one byte indirect from a register to a
memory location, the memory location being pointed
to by a logical 16 bit register L (XR27:R26,
YR29:R28), or ZIR31:R30). The logical
register may be post-incremented or
pre-decremented. Memory access is limited to the
RAM page specified in the corresponding RAM paging
register RAMPX, RAMPY, and RAMPZ.

Operation: 1: (L) <- Rd L: unchanged, OR
2: (L) <- Rd
L - L + 1 L: post-incremented, OR

3: L s- L. - 1
(L) <- Rd L: pre-decremented

Syntax: ST L, Rd L: unchanged
STL, Rd L: post-incremented
ST-L, Rd L: pre-decremented
where: L is one of X, Y, and Z; and

Rd is a register, RO ... R31
Example:

c1r r27 : clear X high byte
1dir26, $20 ; set X low byte to $20
st X-, r() ; store contents of rD into

; memory location $20
; (X post-incremented)

st X, r1 ; store contents of r1 into
; memory location $21
; (Xunchanged)

1dir26, $23 , set X low byte to $23
st-X, r2 ; stare contents of r2 into

; memory location $22
; (X pre-decremented)

STD
Description: Store one byte indirect, with displacement, from a

register to a memory location, the memory location
being painted to by a logical 16 bit register L
(YR29:R28, or ZIR31:r30) and offset by a
displacement value. Memory access is
limited to the RAM page specified in the
corresponding RAM paging register RAMPY, and RAMPZ.

Operation: (L + q) <- Rd
Syntax: LDD L + q, Rd

where: L is one of Y and Z:
q is a displacement, O is q is 63;
and
Rd is a register, RO ... R31

Example:
c1r r29 : clear Y high byte
1dir28, $20 ; set Y low byte to $20
std Y + 2, r4 ; store contents of r1 into

; memory location $22

Recall in FIG. 1 that the INSTRUCTION DECODER 65 troller to effectuate the operations needed to perform the
produces control signals which are carried by the CON- decoded instructions. The discussion will now focus on the
TROL LINES to the various components of the microcon- control Signals associated with the above-described instruc

5,854,939
13

tions in relation to their effect on the circuitry described in
the above figures.

Consider first the bit transfer instructions (BST, BLD)
diagrammed in FIG. 4B. Each of the BST and BLD instruc
tions includes an OP CODE field identifying the specific
instruction and two operands: a register operand Rd and a bit
position operand b. When these instructions are decoded by
the INSTRUCTION DECODER (FIG. 1), a register select
control Signal and a bit Select control Signal will be gener
ated. These control signals control the mux's 132-136 to
access the desired bit. A BST REGISTER SELECT control
signal is produced for the BST instruction based on the
register operand Rd. Similarly, a BST BITSELECT control
Signal is produced based on the bit position operand b.
Similar control signals are produced for the BLD instruc
tion.

As shown in FIG. 4B, the BST BIT SELECT control
Signal operates the 8:1 muX 132 of each of the registers
R0–R31 to transfer the specified bit from each register to the
32:1 mux 136. The BST REGISTER SELECT control signal
operates the 32:1 mux to select the specified one of the 32
bits, thus transferring the Selected bit of the Selected register
to the eight bit data bus 12, which is then latched into the
T-bit position of the STATUS REGISTER.

The control Signals corresponding to the BLD instruction
operate mux's 130 and 134 in a similar manner. A bit stored
in the T-bit is transferred via the data bus 12 into the 32:1
muX 134. The bit is then transferred to one of the 1:8 mux's
132 under the control of the BLD REGISTER SELECT
control Signal, Sending the bit to the Specified register. The
BLD BIT SELECT then outputs the bit into the correct bit
position of the Specified register.

Consider next, the 16 bit arithmetic operations ADIW and
SBIW, the addition and subtraction respectively of a con
stant value with one of the logical 16 bit registers X, Y, Z.
Referring first to FIG.2B, a diagram of the ADIW and SBIW
instructions shows that the OP CODE field and the
constant-Value operand K produce control Signals upon
decoding by the INSTRUCTION DECODER (FIG. 1). The
OP CODE field produces either an ADD ENABLE or a
SUB ENABLE control signal which causes ALU-2 to per
form the appropriate arithmetic operation on its two inputs.
The constant-value operand K produces control signals
V-V which feed into the V input of the selector 110. The
control signals V-V represent in binary form the constant
K specified in the operand of the ADIW and SBIW instruc
tions. In the disclosed embodiment of the invention, the
constant K is a 6 bit datum. In addition, the constant-value
operand K produces a V SELECT control signal which
causes the selector 110 to output the constant V to an input
of ALU-2. The other input to ALU-2 comes from a selected
one of the 16 bit registers X, Y, Z in the REGISTER FILE
via the data-out bus 104, as will be explained below. The
output of ALU-2 feeds back into the REGISTER FILE via
the data-in bus 102 and stored into the selected 16 bit
register, thus completing the operation.

Referring to FIGS. 3A and 3B, consider now the control
signals produced by the INSTRUCTION DECODER for the
ADIW and SBIW instructions. The register operand L
produces an X, Y, or Z SELECT control signal which
enables the appropriate register pair to provide read/write
access to the specified logical 16 bit register. The XSELECT
signal enables registers R26 and R27, the Y SELECT signal
enables registers R28 and R29, and the Z SELECT signal
enables registers R30 and R31. The OP CODE field pro
duces the DATA16 IN ENABLE and the DATA16 OUT

15

25

35

40

45

50

55

60

65

14
ENABLE control signals. The DATA16 OUT ENABLE
control Signal causes the data-out latches 120, 122 to output
the data contained in the Selected logical 16 bit register onto
the data-out bus 104 which feeds into the ALU-2 as
described above. Conversely, the DATA16 IN ENABLE
control Signal causes the data-in latches 124,126 to input the
resulting Sum or difference produced at the output of ALU-2.
Next are the load and store instructions (LD, ST) which

involve the logical 16 bit registers X, Y, Z. Consider first the
form of the LD and ST operations in which there is either
pre-decrement or post-increment of the 16 bit register.
Referring to FIG. 2C, it can be seen that the OP CODE
field for a load/store operation with update generates either
a DECR SELECT or an INCR SELECT control signal,
depending on whether the update is a pre-decrement or
post-increment. The DECR SELECT and INCR SELECT
control Signals operate the Selector 110 to output the appro
priate “-1” or “+1 value which is fed into an input of
ALU-2. The other input to ALU-2 comes from a selected one
of the 16 bit registers X, Y, Z in the REGISTER FILE via the
data-out bus 104. The ADD ENABLE signal is generated so
that ALU-2 adds the value “-1' or “+1 to the contents of
the selected 16 bit register. The MUX SELECT control
Signal operates the muX 114 to output an address to the buS
interface 14 of the REGISTER FILE. The timing of the
MUX SELECT control signal varies depending on whether
the instruction is pre-decrement or post-increment. If a
pre-decrement is desired, the MUX SELECT control signal
is produced after ALU-2 performs its operation, So that muX
114 can transfer the output of ALU-2 to the bus interface 14
before the operation by ALU-2. On the other hand, if a
post-increment is desired, the MUX SELECT causes the
muX 114 to transfer the data-out bus 104 to the bus interface
14. In both cases, the output of ALU-2 is fed back into the
REGISTER FILE via the data-in bus 102 So that the Selected
16 bit register can be updated.

Referring now to FIGS. 3A and 3B, it can be seen that the
LD and ST instructions with update result in the X, Y, Z
SELECT control signals and the DATA16 IN ENABLE
and DATA16 OUT ENABLE control signals. These signals
function in the same way as for the ADIW and SBIW
instructions, Since in all cases, the contents of a 16 bit
register are being updated. In addition to these control
signals, are the R0–R31 SELECT and the DATA8 IN and
DATA8 OUT control signals produced as a result of decod
ing the register operand Rd of the LD and ST instructions.
For the load instruction, the DATA8 IN control signal
operates the lo-byte data-in latch 126 to latch in the data
referenced by the 16 bit register, which is then loaded into
the 8 bit register selected by the R0–R31 SELECT control
signal. For the store instruction, the DATA8 OUT control
Signal operates the lo-byte data-out latch 122 to output the
contents of the 8 bit register selected by the R0–R31
SELECT control signal, which is then stored into the
memory location pointed to by the 16 bit register.

Consider next the form of the LD and ST instructions
without update, i.e. without a pre-decrement or a post
increment operation. With respect to FIG. 2C, since there is
no updating of the selected 16 bit register, only the MUX
SELECT control signal is needed in order to transfer the 16
bit register (via data-out bus 104) onto the indirect-address
bus 14. With respect to FIG. 3B, the same control signals are
produced as for the LD and ST instructions with update,
except that the DATA16 IN ENABLE signal is not needed
Since no update of the 16 bit register occurs.
A third form of the load and Store operations utilizes a

displacement q that is added to the Selected 16 bit register.

5,854,939
15

These are the LDD and STD instructions. AS can be seen in
FIG.2B, the LDD and STD instructions operate in a manner
very similar to the ADIW and SBIW instructions. The
displacement value q is represented by the control signals
V-V. The ADD ENABLE control signal causes ALU-2 to
add the displacement to the Selected 16 bit register.
However, unlike ADIW and SBIW, the LDD and STD
instructions produce the MUX SELECT signal which allows
the computed value to be output to the indirect-address bus
14 as an address. Turning to FIGS. 3A and 3B, the LDD and
STD instructions produce essentially the same control Sig
nals as the LD and ST instructions, with two exceptions:
DATA16 IN ENABLE is not generated since no update of
the 16 bit register occurs; and the LDD and STD instructions
are limited to the Y and Z registers.
The jump instructions IJMP, ICALL as shown in FIG. 3B,

Simply involve the Selection of the Z register and generating
the DATA16 OUT ENABLE control signal to output the
contents of the Z register onto the indirect-address buS 14.
In FIG. 2B, the IJMP and ICALL instructions generate the
MUX SELECT control signal to operate the mux 114 so
that the contents of the Z register can be transferred from the
data-out bus 104 of the REGISTER FILE to the address bus
14. The address is then loaded into the PC COUNTER to
change the flow of execution control.

The compare-with-carry CPC instruction shown in FIG.
3B simply involves the generation of one of the R0–R31
SELECT control signals for each of the register operands
Rd, Rr of the instruction. The DATA8 OUT control signal
outputs the contents of the Selected 8 bit registers.

Additional control signals (not shown) are generated
which cause the 8 bit ALU-1 to Subtract the Sum of the
contents of the Rr register and the carry bit from the contents
of the Rd register. The result of the operation is not saved;
however, the flags in the Status register are set according to
the result of the operation.

The CPC instruction enhances the 8 bit architecture of the
microprocessor by providing 16 bit capability in an 8 bit
environment. The carry result from an 8 bit operation can be
used in a subsequent 8 bit CPC operation to produce a 16 bit
effect. For example, a 16 bit compare can be implemented as
follows:

; compare a 16 bit “value contained in registers R3 and R2
; to a 16 bit “value' contained in registers R1 and RO

cp r2, ro ; compare low bytes
cpc r3, r1 ; compare high bytes
brne LABEL ; branch if not equal

LABEL:

The “cp” instruction will affect the carry bit which is then
used in the Subsequent “cpc' instruction. The register pairs
R3/R2 and R1/R0 effectively serve as holders for two 16 bit
values.

This concludes the discussion of the control signals
relevant to the instructions and logic circuits disclosed with
respect to the microcontroller of the present invention. It is
understood that these signals are not the only control Signals
involved in the execution of the above instructions. Addi
tional Signals are produced to control other elements of the
microcontroller. For example, address and read/write Strobes

15

25

35

40

45

50

55

60

65

16
are generated for those of the above instructions involving
memory access. In addition, execution timing control is
required to properly Synchronize the issuance of the control
Signals. However, a perSon of ordinary skill in the art of
integrated computer circuits is capable of determining, with
out undue experimentation, the required additional control
Signals and the necessary timing of Such signals to practice
the invention.
We claim:
1. A microcontroller having a Harvard architecture, com

prising:
a program bus;
a program memory Store for Storing programs,
an instruction decoder unit coupled to Said program Store

via Said program bus,
an eight-bit data bus Separate from Said program bus,
randomly accessible memory Separate from Said program

Store coupled to Said eight-bit data bus,
a register file coupled to Said eight-bit data bus, Said

register file having a plurality of eight-bit registers, Said
register file further having means for combining two of
Said eight-bit registers to be accessed as a Single logical
Sixteen-bit register;

a general purpose ALU coupled to receive the contents of
two of Said eight-bit registers, Said general purpose
ALU having an output coupled to Said eight-bit data
bus,

a direct-address bus coupling Said program execution unit
to directly acceSS Said data Store and Said register file
during program execution; and

an indirect-address buS providing Said register file with
indirect data access to said randomly accessible
memory during program execution;

Said register file further including a dedicated ALU
coupled to Said means for combining in order to
perform arithmetic functions on a logical Sixteen-bit
register accessed through Said combining means,

Said indirect-address buS having address-receiving means
for receiving a Sixteen-bit value from Said combining
means, thereby providing Sixteen-bit indirect address
ing.

2. The microcontroller of claim 1 wherein said register file
further includes a Selector means for outputting a numeric
constant of -1, a numeric constant of +1, or a program
generated value, Said dedicated ALU being coupled to
receive output from Said Selector means in order to perform
arithmetic with a logical Sixteen-bit register accessed
through Said combining means.

3. The microcontroller of claim 2 wherein one of said two
eight-bit registerS is the low byte of Said logical Sixteen-bit
register and the other of Said two eight-bit registers is the
high byte of Said logical Sixteen-bit register.

4. The microcontroller of claim 1 further including a
paging register and address-forming means, coupled to Said
address-receiving means, for forming an address from the
contents of Said paging register and a sixteen-bit address
provided by Said combining means.

5. The microcontroller of claim 4 wherein Said paging
register is an eight-bit register, Said paging register being
coupled to Said eight-bit data bus, whereby loading a value
into Said paging register Specifies one of 256 pages of 64K
bytes each.

6. The microcontroller of claim 1 further including a bit
Store for holding a single bit and means for transferring a bit
between Said bit Store and a bit location in a register Selected
from Said register file.

5,854,939
17

7. The microcontroller of claim 6 further including a
Status register coupled to Said eight-bit data bus, Said Status
register having a plurality of bit positions, one of which
Serves as Said bit Store.

8. In an eight-bit microcontroller having a program bus, a
program Store, a program execution unit coupled to Said
program Store via Said program bus, an eight-bit data bus, a
data Store Separate from Said program Store coupled to Said
data bus, a general purpose eight-bit ALU having an output
coupled to Said data bus, and a first address bus coupling Said
program execution unit to Said data Store, the improvement
comprising:

a register file having a plurality of eight-bit registers
accessible by Said general purpose eight-bit ALU to
provide eight-bit arithmetic on two of Said eight-bit
registers, Said register file further having register means
for providing access to two of Said registers as a
Sixteen-bit register, Said register file further having a
Sixteen-bit ALU and a value Selector, Said Sixteen-bit
ALU being coupled to receive a sixteen-bit datum from
Said register means and to receive a numeric value from
Said value Selector to perform a computation therewith;
and

a Second address bus for receiving the result of a com
putation from Said Sixteen-bit ALU, said Second
address bus being coupled between Said register file
and Said data Store, the result of Said computation being
used as an address of a memory location in Said data
Store.

9. The eight-bit microcontroller of claim 8 wherein said
value Selector provides a numeric constant of -1, a numeric
constant of +1, or a program-generated numeric value.

10. The eight-bit microcontroller of claim 9 wherein said
register file includes means for transferring either the result
of Said computation of Said Sixteen-bit ALU or a sixteen-bit
datum from Said register means to Said Second address bus.

11. The eight-bit microcontroller of claim 10 further
including a paging register and means for forming an
extended address based on the contents of Said paging
register and a Sixteen-bit address provided from Said register
CS.

12. The eight-bit microcontroller of claim 11 further
including an external address bus and means for Selectively
coupling Said extended address to Said external address bus
and to Said Second address buS.

13. The eight-bit microcontroller of claim 12 wherein said
paging register is an eight-bit register.

14. The eight-bit microcontroller of claim 12 further
including a bit Store and means for transferring a one-bit
datum between Said bit Store and a bit location in a register
of Said register file.

15. The eight-bit microcontroller of claim 14 further
including a status register coupled to Said eight-bit data bus,
Said bit Store being a bit location in Said Status register.

16. An eight-bit microcontroller having a Harvard-based
architecture, comprising:

a program instruction decoder for decoding program
instructions thereby generating control Signals,

a randomly accessible memory;
a register file having a plurality of eight-bit registers,

register means for accessing two of Said eight-bit
registers as a logical Single Sixteen-bit register, a
numeric value Selector for Outputting either a "+1
value or a “-1’ value, and a sixteen-bit adder for
adding the output of Said numeric value Selector to Said
logical Single Sixteen-bit register;

1O

15

25

35

40

45

50

55

60

65

18
an eight-bit ALU coupled to receive the contents of two

of Said eight-bit registers for arithmetic operations
thereon;

a status register having a transfer bit for receiving a bit
from one of Said eight-bit registers and for copying a bit
to one of Said eight-bit registers,

a bit transfer means for transferring a bit between one of
Said eight-bit registers and Said transfer bit of Said
Status register;

an eight-bit data bus coupling together Said data Store,
Said register file, Said eight-bit ALU, said Status
register, and Said bit transfer means,

an address bus coupling Said register file to Said randomly
accessible memory to access memory locations therein;
and

control lines for carrying Said control Signals to Said
register file, Said eight-bit ALU, Said Status register, and
Said bit transfer means.

17. The microcontroller of claim 16 including a first
Subset of program instructions each having a numeric
opcode specifying an increment or a decrement code and a
register-pair opcode Specifying one of a pair of Said eight-bit
registers, wherein Said instruction decoder is characterized
by generating first control Signals in response to Said
register-pair opcode and Said numeric opcode which cause:
Said register means to acceSS Said pair of registers as a
Sixteen-bit register; Said numeric value Selector to output a
“+1 or a “-1'; and said sixteen-bit adder to add said output
of Said Selector to Said Sixteen-bit register.

18. The microcontroller of claim 17 wherein said numeric
value Selector includes means for receiving a numeric con
Stant and for outputting Said numeric constant, Some of Said
first Subset of program instructions having numeric opcodes
which specify a numeric value, wherein Said instruction
decoder is further characterized by generating Second con
trol signals in response to those of Said numeric opcodes
which Specify a numeric value, Said Second control Signals
being a binary representation of Said numeric value which
are received by Said numeric value Selector.

19. The microcontroller of claim 18 further including a
Second Subset of program instructions each having a register
opcode identifying a register in Said register file and a bit
opcode Specifying a bit position of the register identified by
Said register opcode, wherein Said instruction decoder is
further characterized by generating third control Signals in
response to Said register opcode and Said bit opcode which
cause Said bit transfer means to transfer a bit between said
transfer bit of Said Status register and the bit position
designated by Said register opcode and by Said bit opcode.

20. The microcontroller of claim 19 further including a
program instruction having a destination register opcode and
a Source register opcode, each Specifying one of Said eight
bit registers, Said Status register further including a carry bit,
Said eight-bit ALU being coupled to receive Said carry bit,
wherein Said instruction decoder is further characterized by
generating a fourth Set of control Signals in response to Said
destination and Said Source register opcodes which cause
said eight-bit ALU to perform the following arithmetic
computation:

Rd-Rr-C,

where Rd and Rr are the contents of registers respectively
identified by Said destination register opcode and Said
Source register opcode, and C is the content of Said
carry bit.

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 5,854939 Page 1 of 1
DATED : December 29, 1998
INVENTOR(S) : Vegard Wollanet al.

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Column 16
Line 28, "said program execution unit' should read -- Said instruction decoder unit --.

Signed and Sealed this

Eighth Day of June, 2004

WDJ
JON W. DUDAS

Acting Director of the United States Patent and Trademark Office

