Discrepancy My edited text ATMEL text Original+Google Translate Question or note

1.) Six of the 32 extra working registers can be used to form a combination of three 16-bit registers. <d1>These
16-bit registers can be used to access external memory and FLASH programs by indirectly addressing the address
pointer. <q1>The LGT8XM supports single-cycle 16-bit arithmetic, greatly improving the efficiency of indirect
addressing. The three special 16-bit registers in the LGT8XM core are named X,Y, Z registers, which are described
in more detail later.

Six of the 32 registers can be used as three 16-bit indirect address register pointers for Data
Space addressing — enabling efficient address calculations. One of the these address pointers
can also be used as an address pointer for look up tables in Flash program memory. These
added function registers are the 16-bit X-, Y-, and Z-register, described later in this section.

32 MaE TAFEFF 7 6 DT MNE SR =A 16 A3 748, oI T EHE Stk FE T V5 R SR i =2 A AR
FLASH #2fF43Rl, LGT8XM (iR JAMARY 16 M AR R BRHITE S T HEZESFHERIRR, LGT8XM WAZHIX =M
TR 16 R fFasianoh XY, Z S (e S EE RN 4,

32 of the 32 working registers are used to form a combination of three 16-bit registers that can be used to indirectly
address the address pointer for accessing external memory and FLASH program space. The LGT8XM supports
single-cycle 16-bit arithmetic operations, greatly improving the efficiency of indirect addressing. These three
special 16-bit registers in the LGT8XM core are named X, Y, and Z registers, which are described in detail later.

<d1>Can, “all three” 16b registers, or (like the ATMEL DS) can only the one access FLASH?
<qg1>Is the 16 bit single cycle ALU really a unique feature?

2) The ALU supports arithmetic logic operations between registers and between constants and registers. The
operation of a single register can also be performed in the ALU. After the ALU operation is completed, the effect of
the operation on the <q1>state of the kernal is updated to the status register (SREG).

The ALU supports arithmetic and logic operations between registers or between a constant and
a register. Single register operations can also be executed in the ALU. After an arithmetic opera-
tion, the Status Register is updated to reflect information about the result of the operation.

ALU FiFifrdn 2 B A 5 A e < M AR Z R R, AN FfAde s B WAl DIfE ALU H#iT, ALU BHEZERNE,
IBREEFN MR SR I B 2R AT 788 H(SREG),.

The ALU supports arithmetic logic operations between registers and between constants and registers. The operation
of a single register can also be performed in the ALU. After the ALU operation is completed, the effect of the
operation result on the kernel state is updated to the status register (SREG).

<d1> Is this just semantics?

<g1> Do these references to the “Kernal” have significance or are they just translation anomalies.

3.) Program flow is provided by conditional and unconditional jump and call instructions, able to directly
address the whole address space. Most LGT8XM instructions are 16 bits. Each program address space corresponds
to a 16-bit or 32-bit LGT8XM instruction.

Program flow is provided by conditional and unconditional jump and call instructions, able to
directly address the whole address space. Most AVR instructions have a single 16-bit word for-
mat. Every program memory address contains a 16- or 32-bit instruction.

PR iR P2 a1 SR A TC SR kS /)8 P SR, AT DAL SR ARRE P X O, K¥E7r LGT8XM #6570 16 fi2, &M/l
HkA2 R R — 16 A28 32 Az LGT8XM 454

Program flow control can be addressed to the program area by conditional and unconditional jump/call
implementations. Most LGT8XM instructions are 16 bits. Each program address space corresponds to a 16-bit or
32-bit LGT8XM instruction.

NOTE: The following is from the ATMEL DS but is omitted from LGT as is the SPM instruction.

Program Flash memory space is divided in two sections, the Boot Program section and the Application Program
section. Both sections have dedicated Lock bits for write and read/write protection. The SPM instruction that writes
into the Application Flash memory section must reside in the Boot Program section.

4.) After the kernel responds to an interrupt or a subroutine call, the return address Program Counter (PC) is
stored on the stack. The Stack is effectively allocated in the general data SRAM, and consequently the Stack
size is only limited by the total SRAM size and the usage of the SRAM. <d1>All applications that support interrupt
or subroutine calls must first initialize the Stack Pointer Register (SP), which can be accessed through the IO space.
Data SRAM can be accessed in five different addressing modes.

The internal memory of the LGT8XM is linearly mapped to a uniform address space. Please refer to the the
storage memory chapter for further details.

During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the
Stack. The Stack is effectively allocated in the general data SRAM, and consequently the Stack
size is only limited by the total SRAM size and the usage of the SRAM. All user programs must
initialize the SP in the Reset routine (before subroutines or interrupts are executed). The Stack
Pointer (SP) is read/write accessible in the I/0 space. The data SRAM can easily be accessed
through the five different addressing modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.

PRIAZZ e . P DT B2 e A R (Rl stk (PC) A B TE AR D, HEMA D ICTE RS — R & SRAM A, R HHERR AT RN
ZRR T Z#4tH SRAM WA/ MITR, I SR el 127 18 FH RS A, D020 S i aa e iR FaEt 25 /7 95 (SP),SP AJ
Pl 10 “=[Avinl, #dE SRAM A] DA 5 MrRERFAREE T R, LGT8XM HYNHRAF it s [AIE A2k M e st 28—
Gi—HHbhk 2 E, BAIESEFERETRE,

After the kernel responds to an interrupt or a subroutine call, the return address (PC) is stored on the stack. The
stack is allocated in the system's general data SRAM, so the size of the stack is limited only by the size and usage of
the SRAM in the system. All applications that support interrupt or subroutine calls must first initialize the Stack
Pointer Register (SP), which can be accessed through the IO space. Data SRAM can be accessed in five different
addressing modes. The internal memory of the LGT8XM is linearly mapped to a uniform address space. Please
refer to the introduction of the storage chapter for details.

<d1> Is there a difference between just “calling the stack pointer and calling the stack pointer “in the Reset
routine?”

5.) The LGT8XM includes a flexible interrupt controller. It can be controlled by a global interrupt enable bit in
the Status Register. Every interrupt has a separate interrupt vector. The priority of the interrupt has a corresponding
relationship with the interrupt vector address. The smaller the interrupt address, the higher the priority of the
interrupt.

A flexible interrupt module has its control registers in the I/O space with an additional Global Interrupt Enable bit in
the Status Register. All interrupts have a separate Interrupt Vector in the Interrupt Vector table. The interrupts have
priority in accordance with their Interrupt Vector position. The lower the Interrupt Vector address, the higher the
priority.

LGT8XM W& T — A RIGH izl #s, hWrsh s r] LB R ST a P — D2 fm P Re iz 20l Frd A rh I
= b N L Sl 5= O S eV 2 T TR e b R S DS AP e 2l vt | w A A S 21 R R e L =78

The LGT8XM core includes a flexible interrupt controller that can be controlled by a global interrupt enable bit in
the status register. All interrupts have a separate interrupt vector. The priority of the interrupt has a corresponding
relationship with the interrupt vector address. The smaller the interrupt address, the higher the priority of the
interrupt.

<d1> Is there a significant difference between specifying that an interrupt controller is “in the I/O space and not?

6.) The I/0 space contains 64 register spaces that can be directly addressed by IN/OUT instructions. These
registers are used for kernel control as well as control functions for status registers, SPI and other I/O peripherals.
<d1>This space can be accessed directly or by their address mapped to the data memory space (0x20 - Ox5F). In
addition, the LGT8FXS8P also includes extended I/O space, which is mapped to data memory space 0x60 — OxFF,
which can only be accessed using ST/STS/STD and LD/LDS/LDD instructions.

The I/0O memory space contains 64 addresses for CPU peripheral functions as Control Regis-
ters, SPI, and other I/O functions. The I/O Memory can be accessed directly, or as the Data
Space locations following those of the Register File, 0x20 - 0x5F. In addition, the
ATmega48P/88P/168P/328P has Extended I/O space from 0x60 - OxFF in SRAM where only
the ST/STS/STD and LD/LDS/LDD instructions can be used.

I/O ZHEE T 64 DA LUE IN/OUT 5<% B SR el X HFERPISN PAZZHI DA IRZS 27 7748, SPI DA
A T/O SNSRI RE, IXER 723 A AT LA IS IN/OUT 454 E4% 17 A, AT DU AT ISt 2 254 17 i o 2 TR A ke
il 0x20 — 0x5F), 4 LGT8FX8P Wl &Y FEH I/O 23 [al, A T et 2z 7 i 2=] 0x60 — OXFF,iX B H BB
ST/STS/STD AN LD/LDS/LDD 54V,

The I/0 space contains 64 register spaces that can be directly addressed by IN/OUT instructions. These registers are
realistic for kernel control as well as control functions for status registers, SPI and other I/O peripherals. This space
can be accessed directly by the IN/OUT instruction or by their address mapped to the data memory space (0x20 —
0x5F). In addition, the LGT8FX8P also contains extended I/O space, which is mapped to data memory space 0x60 —
0xFF, which can only be accessed using ST/STS/STD and LD/LDS/LDD instructions.

<d1> Is the I/O memory in or after 0x20-0x5F?

7.) <q1>To enhance the computing power of the LGT8XM core, a 16-bit LD/ST extension has been added to
the instruction set. This 16-bit LD/ST expansion works with the <q2>16-Dimensional Operation Acceleration Unit
(uDSU) For efficient 16-bit data operations. At the same time, the kernel also increases the 16-bit access capability
to the RAM space. The 16-bit LD/ST extension can pass 16 bits of data between the uDSU, RAM, and working
registers. Please refer to the "Digital Operation Accelerator" section for details.

<Not in ATMEL DS>

HigsE LGT8XM MAZHVIZHERE)] F5LmAT4e N T 16 2f9 LD/ST ¥ /&, 1t 16 i LD/ST ¥ BRI & 16 iz &
HEIT(uDSU) LAE, LM 16 i EdRIzE, RN AZ IS I RAM ZE[ER) 16 ALijRIGES . [t 16 f2 LD/ST ¥ /&
A[DATE uDSU,RAM, DA TAEFF 7 o5 & AL 16 AL iEdE, BAIESE” s mEds” &7,

To enhance the computing power of the LGT8XM core, a 16-bit LD/ST extension has been added to the instruction
line. This 16-bit LD/ST expansion works with the 16-Dimensional Operation Acceleration Unit (uDSU) for efficient
16-bit data operations. At the same time, the kernel also increases the 16-bit access capability to the RAM space. So
the 16-bit LD/ST extension can pass 16 bits of data between the uDSU, RAM, and working registers. Please refer to
the "Digital Operation Accelerator” section for details.

<q1> Does this look correct? (I have no second source reference for this)

<g2> What is the meaning behind the “16-” in “16-Dimensional Operation Acceleration Unit (uDSU)....?” Is this
some kind of error that should be “16-bit” or is it some kind of feature? (I assume it’s “16bit” but must ask to avoid
making an ASS=U+ME)

ARITHMETIC LOGIC UNIT (ALU)
8.) <q1>The LGT8XM internally contains a 16-bit arithmetic logic unit that can perform
16 bit arithmetic operations on data in one cycle. The highly efficient ALU is connected
to 32 general purpose working registers. The AL U has the ability to perform two
arithmetic operations between registers or registers and immediate data in one cycle.
There are three types of ALU operations: arithmetic, logic, and bit operations. <q2>The ALU
also includes a single-cycle hardware multiplier that implements direct signed or
unsigned operations on two 8-bit registers in a single cycle. Please refer to the detailed
description in the instruction set section.

The high-performance AVR ALU operates in direct connection with all the 32 general purpose
working registers. Within a single clock cycle, arithmetic operations between general purpose
registers or between a register and an immediate are executed. The ALU operations are divided
into three main categories — arithmetic, logical, and bit-functions. Some implementations of the
architecture also provide a powerful multiplier supporting both signed/unsigned multiplication
and fractional format. See the “Instruction Set” section for a detailed description.

LGT8XM WHE T —1 16 (AR AIZHIZ R BT, R AE— DA ER 16 NEFERNEAIZE, &M ALU 5 32
B LT ZRHIE, REE— DN RIANTE RN A 7 e 88 A7 e 5 L A I ERIZRIZE ., ALU R8N
=M EARBEUANAIZE, RN ALU 800 E T — D3RR SRIASS, BE7E — D RIANSEIM A 8 (a7 as B
ERNASHE LN SIZRE, SRR TN 4,

The LGT8XM internally contains a 16-bit arithmetic logic unit that can perform 16 arithmetic operations on data in
one cycle. The highly efficient ALU is connected to 32 general purpose working registers. The ability to perform
two arithmetic operations between registers or registers and immediate data in one cycle. There are three types of
ALU operations: arithmetic, logic, and bit operations. At the same time, the ALU part also contains a single-cycle
hardware multiplier that can directly implement signed or unsigned operations on two 8-bit registers in one cycle.
Please refer to the detailed description of the instruction set section.

<q1>This has become more of a personal question for me at this point, but... does this seem significant? I don’t
believe ATMEL ever disclosed the architecture they use for the AVR’s ALU. Someone on AVRfreaks took an
educated guess in a thread a couple of years ago concluding that he thought it had to be an 8 bit unit. This is all well
beyond my paygrade though. The questions on my mind are, is this an upgraded feature or marketing spin, like “it
works with two 8 bit operands, therefore it’s “16bit” (wink wink)?” Or, is this the functional source of the claimed
faster instruction executions? <<this is the rabbit hole that has been really bugging me>>

<g2>Does this look like a correct translation? This is a unique line/feature added that is not in the ATMEL DS.

STATUS REGISTER (SREG)

9. The status register mainly stores the result information generated by the execution

of the most recent ALU operation. This information is used to control the program

execution flow. The status register is updated after the ALU operation has completely

ended. This usually eliminates the need for separate compare instructions, resulting in a more
compact and efficient code implementation. The value of the status register is not
automatically saved and restored in response to an interrupt and exit from the

interrupt, which requires software to implement.

The Status Register contains information about the result of the most recently executed arithme-
tic instruction. This information can be used for altering program flow in order to perform
conditional operations. Note that the Status Register is updated after all ALU operations, as
specified in the Instruction Set Reference. This will in many cases remove the need for using the
dedicated compare instructions, resulting in faster and more compact code.

The Status Register is not automatically stored when entering an interrupt routine and restored
when returning from an interrupt. This must be handled by software

REFHERPEERE TRPUTRIE—X ALU BEMZANGERE R, XEEEHTIEGRFHITRE. REFFHR2
18 ALU 184558 245 05 537, X PR AT DA 25 7 {6 B A B <, T DU SR BE N X 28 I A S B, RS8R Y
{EAE N S AR AT AR R S I = B SRR IR TR 2 R R SE T

The status register mainly stores the result information generated by the execution of the most recent ALU
operation. This information is used to control the program execution flow. The status register is updated after the
ALU operation has completely ended, thus eliminating the need for separate compare instructions, resulting in a
more compact and efficient code implementation. The value of the status register is not automatically saved and
restored in response to an interrupt and exit from the interrupt, which requires software to implement.

