I found the picture of this IC on my computer and decided to take another look.
I think you are right, these small structures like the one I posted above are zeners, possibly acting as fuses for trimming. If you look closely you may notice that there are thick lines visible on metal wherever it crosses the border of N+ diffusion. However, there is no line between the N+ frame and the metal finger which reaches to the P diffusion inside the frame. Therefore, N+ must also be present in that finger, under the metal. The contact window covers only the N+, not the P. The P is contacted by the lower metal trace. Together, they make a diode with low reverse breakdown.
I attach a picture of diode-strapped NPN for comparison. Here the collector contact N+ diffusion (right) also partly overlaps with the base P diffusion (left). The edges of both diffusions can clearly be seen on the overlap area. The whole area is covered by metal and there is a contact window extending over both parts.
So what we have in the upper right corner of the die is a bunch of resistors and some (presumably) fuses and DNC pads. Parts of the circuit are obscured by bonding wires. There seems to be some sort of connection between the pads and ground, but I think it's not very low resistance because in such case the pads wouldn't really be necessary. The resistors go to the wtf1,wtf2 points in that weird transistor network which biases the emitters of the differential pair.
The big structure with multiple fingers is different. The central part appears to be a P diffusion because its color is the same as the P parts of the buried zener. There seems to be an N+ diffusion aligned exactly under the metal rectangle, because there is a line where the rectangle joins the trace coming from the DNC pad. So it looks like a diode-strapped NPN so far. But the emitter fingers leave the base area and join an N+ frame which surrounds the base and makes contact with the collector.
A similar structure (plus another zener zap?) is found near the TRIM pad in the bottom right corner.
Regarding the reference, it seems to roughly follow the datasheet schematic. It consists of the buried zener and NPN located on the central axis on the left side. The NPN is a Vbe-multiplier whose output is averaged with that of the zener. The topmost resistor in the chain is adjustable by all those fuses on the left side. The divider chain has a few more taps and some other transistors hang off of them. The PTAT generator in the bottom left corner appears to actually be a proper bandgap reference (Brokaw cell topology), because I simulated the circuit with transistor and resistor ratios as seen on the die (4:1, 8:1) and it produces close to 1.2V, depending on which transistor model I choose.