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1 Introduction and motivation

This tutorial describes how to accurately measure signal power using the FFT. While it is easy to
calculate powers in the time domain, this is not always applicable: If a signal contains several spec-
tral components and broadband noise, considering the frequency domain allows to measure power
of these components individually or to measure SNR (by separately considering signal and noise).
However, obtaining accurate power numbers after having performed an FFT is not straightforward,
because several e�ects introduce errors during FFT processing, mostly due to windowing. This
paper describes the di�erent e�ects and explains how they can be avoided or compensated. Finally,
it will be explained how to do accurate measurements of signal and noise power using the FFT
spectrum.

2 Basics

Before we dive into the details, some basics on FFT for real valued signals (as they frequently occur
in real world) are given. If you are familiar with the basics you can step to Section 3 immediately.

2.1 FFT for real valued signals

In this paper real valued time domain signals are assumed, for which a N point FFT is used to
transform it into the power spectrum with bin spacing ∆f = fs/N .

To calculate the N point FFT the Matlab algorithm 1 can be used. Here, after taking the FFT,
its magnitude is calculated and the bins are scaled by 1/N . Since the spectrum is mirrored, the
�rst half of N/2 bins contains all necessary information on the spectrum, the second half can be
discarded. To account for this discarding, the remaining bins are scaled by a factor of 2, except the
(�rst) DC bin. This results in a RMS valued FFT representing the RMS spectrum. Squaring the
results leads to the power spectrum. Note, that for real signals a N point FFT is calculated, but
the spectrum may contain only N/2 bins.
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Algorithm 1 Calculate an FFT with Matlab

input: N real time domain samples (time_signal)

twosided_fft = (1/N) * abs( fft(time_signal,N) ); % do fft

onesided_fft(1) = twosided_fft(1); % copy DC bin

onesided_fft(2:N/2) = 2 * twosided_fft(2:N/2); % double other bins

power_fft = onesided_fft.^2; % convert from RMS to power

output: N/2 point power spectrum

If the time signal represents a voltage over a resistor R, the output of Alg. 1 can be converted
to dBm on a logarithmic scale with

P [dBm] = 10 · log10
(
power_�t

R · 1mW

)
An overview of all calculation steps is shown in Fig. 2.1.

FFT abs(x) x² 10log(x/ref)
time domain

signal

complex FFT bins RMS spectrum power spectrum
power spectrum

in dBm

Fig. 2.1: From complex FFT output to the power spectrum in dBm

Further information on the basics of FFT can be found in [1]. Alternative means of calculating
the signal power in the time domain can be found in Appendix A.
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3 E�ects introducing errors

In the following all e�ects that in�uence amplitude measurements using FFT are described. Some
e�ects only apply to narrowband signals (e.g. sine), others to broadband noise and some to both.

3.1 Leakage

Spectral leakage is the e�ect, that the energy of the signal is distributed (smeared) among many
frequency bins. A sine signal is not represented as a single sharp peak, but more like a broad bump,
Fig. 3.1.

Spectral leakage is occurring because of the fact, that the FFT analyzes only a (short) slice
of a signal (N samples). From this slice we usually want to extract information about the whole
signal. The FFT actually outputs the spectrum of a theoretical signal, that is composed of in�nite
repetitions of that slice of N samples. Usually this theoretical signal has discontinuities at the
borders of the slices. Therefore the spectrum output by the FFT does not exactly represent the
one of the �true� signal.

For signals, whose periods (or a multiple of a period) coincidentally or intentionally �t exactly in
the slice, leakage e�ects do not occur. This can be achieved, by coupling the signal to be measured
to the analog-to-digital converter's sample clock. Since this is in practice rarely possible we assume
in the following that leakage occurs.

To suppress leakage, windows can be used, that are applied to the time domain samples before
FFT. Commonly used windows are the hann window (for general purpose), the �attop window
(for accurate amplitude measurement) or no window, i.e. a rectangular window, at all (for noise
measurements), see Fig. 3.1. The amount of leakage, that is displayed using a window can be
measured by highest sidelobe in dB and fall o� in dB/octave (more information in [2]).

Leakage is not a problem for accurate measurements, as long as leakage does not mask spectral
components, such as spurs or noise.
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Fig. 3.1: True spectrum and the leakage e�ect of FFT for di�erent windows
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3.2 Coherent power gain

If a window is applied, it reduces the amplitude of the time domain signal, especially at the left
and right borders of the window, as shown in Fig. 3.2.
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Fig. 3.2: The reason for coherent power gain: amplitude reduction due to windowing

This reduction of amplitude introduces an amplitude error, termed coherent power gain (CPG).
The word �gain� may be misleading, since CPG actually describes a loss in signal power. Fig. 3.3
shows how the FFT amplitude is reduced in practice by the use of windows.

Every window has a �xed, characteristic CPG. Values for practically relevant windows are given
in Section 3.6 or can be found in [3]. Simply add this gain to the FFT output to compensate for
the power reduction. If no windowing (rectangle window) is used, there is no power loss and the
coherent power gain is 1 or 0 dB.
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Fig. 3.3: The impact of coherent power gain (CPG): true amplitude of the sine signal is 0 dBm,
errors for the di�erent windows can be clearly observed (here frequency was adjusted to
avoid leakage). For the �attop window CPG can be read as approximately 13 dB (exact:
13.33 dB).
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3.3 Scalloping loss

The FFT processes digital data, which is by de�nition discrete both in time and frequency. Due to
frequency discretization the frequency of a signal may fall in between two bins. If this is the case,
the displayed power level is reduced because the signal power is spread among two bins. This loss
is called scalloping loss. As a side e�ect leakage may then show up worse.

Discretization of frequencies can also be thought as sampling the corresponding continuous
spectrum. Dependent on which frequencies exactly the continuous spectrum is sampled, the FFT
spectrum looks di�erent, as can be seen in Fig. 3.4. This is also called the picket pence e�ect,
because the sampling is similar to view the continuous spectrum though a picket fence

Fig. 3.4 shows two di�erent cases: on the left, the signal frequency falls nearly on a bin frequency:
amplitude loss is small and leakage reduced. On the right the signal frequency falls between two
bins: signal power is shared and displays reduced amplitude and leakage is stronger.

A very unpleasant property of scalloping loss is the fact, that it cannot be described by a �xed
value for each window. So it cannot be used as a simple scaling factor to compensate the loss.
Scalloping loss is in general even di�erent for di�erent spectral components. Scalloping loss largely
depends on signal frequency, sample rate and the number of bins. However, one can specify a worst
case loss, which occurs, if a signal frequency falls exactly half-way between two bins.

Furthermore, there are two ways to avoid scalloping loss:

• Use a �attop window, which exhibits only very little maximum scalloping loss (<0.02 dB)

• Couple the signal frequency properly with the sample rate, which is the same method used
to avoid leakage (see Sec. 3.1).
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Fig. 3.4: Scalloping loss, that occurs when signal frequency falls between two bins, here no window-
ing was used to avoid coherent power gain
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3.4 FFT processing gain

Processing gain reduces the displayed noise �oor and can be explained as follows: FFT processing
can be seen as sending a time signal through a bank of N �lters, each with bandwidth ∆f (bin
spacing) and determining the power at every �lter output. As the number of frequency bins or N
(or �lters respectively) is increased, the �lters become narrower and the power at each bin (power
at the ��lter output�) becomes smaller, see Fig. 3.5.

The processing gain (PG) exactly describes this reduction. If N is doubled, ∆f is halved and
the displayed noise �oor is reduced by 3 dB. This a�ects power measurements of broadband signals,
such as noise. The noise �oor in an FFT plot is therefore displayed lower (by the processing gain)
than it actually is. Processing gain can be calculated by

PG[dB] = 10 · log10
(
N

2

)
and can be added to the level of noise �oor to compensate this e�ect.
To measure noise �oor accurately the results of several FFTs can be averaged to reduce amplitude

�uctuations (Fig. 3.5, right).
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Fig. 3.5: Processing gain: The reduction of the displayed noise �oor is clearly visible. To reduce
�uctuations multiple FFTs have been averaged to enable a clear read of the noise �oor
level

3.5 Equivalent noise bandwidth

Dependent on the applied window the amount of noise that is accumulated in one frequency bin
varies, based on its characteristic equivalent noise bandwidth (ENBW) [3, 4]. This e�ects leads to
an increased displayed noise �oor, if a non rectangular window is used. To account for this e�ect a
correction factor needs to be subtracted from the noise �oor to compensate for the larger equivalent
�lter bandwidth. This correction factor in dB can be calculated from the ENBW for every window,
see Tab. 2. Take into account this number, if noise �oor measurements are conducted.
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3.6 Summary
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Fig. 3.6: Overview of all errors, that occur during FFT processing (here a noisy sine signal with 0
dBm, hann window)

Tab. 1: Overview of errors introduced during FFT processing

Error e�ect Source Sine signal errors Noise �oor errors

Leakage �nite length of FFT spectral purity negligible
CPG windowing amplitude yes
Scalloping Loss discretization amplitude (variable) no
Processing Gain FFT �lter bank property no yes
ENBW windowing no yes

Tab. 2: Overview over di�erent windows and their parameters, for more windows see [3]

Window Highest
sidelobe

Fall o� (per
octave)

CPG Scalloping
loss (max)

ENBW
correction

No (rectangle) -13 dB -6 dB 0 dB 3.92 dB 0 dB
Hann -32 dB -18 dB 6.02 dB 1.42 dB 1.76 dB
Blackman -58 dB -18 dB 7.54 dB 1.10 dB 2.38 dB
Flattop n/a n/a 13.3 dB 0.02 dB 5.76 dB
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4 Exact measurements

Exact measurements of signals can be done using the FFT, if the errors described above are properly
taken into account. In the following sine signals and noise will be described separately since they
are subject to di�erent error e�ects.

4.1 Sine signals and narrowband signals

Sine signals and other narrowband signals (bandwidth smaller than the bin spacing ∆f) show up
as peaks in the spectrum.

The true power of narrowband signals Ptrue can be calculated from the displayed power Pdispl

(= power of spectrum peak) by

Ptrue[dBm] = Pdispl[dBm] + CPG[dB] + scalloping loss[dB] (4.1)

Coherent power gain can be read from Tab. 2. Note, that scalloping loss is not constant. If
the signal energy is captured by a single bin, 0 dB can be assumed, if the signal energy is equally
distributed among two bins, choose the worst case value from Tab. 2. If exact values are required
and the signal cannot be centered on a single bin, the easiest way is to use a �attop window, which
exhibits almost no scalloping loss (always <0.02 dB). For further information on the �attop window
and its computationally e�cient usage (if required) see [5].

Measurement of frequency is straightforward if the desired accuracy is coarser than the bin spac-
ing. Otherwise interpolation methods can be applied, that improve frequency resolution without
using more FFT points [1].

4.2 Noise and other wideband signals

Here two signal types have to be distinguished: white noise, i.e. noise that has a constant power
density over the whole frequency band, and arbitrary noise or broadband signals.

4.2.1 Reading the average noise �oor (white noise)

This method is applicable to white noise, where the true noise power Ptrue can be calculated from
the displayed noise �oor Pfloor by using:

Ptrue[dBm] = Pfloor[dBm] + CPG[dB] + PG[dB] − ENBWcorr[dB] (4.2)

For an accurate measurement the displayed noise �oor has to be determined precisely. However,
due to random properties of noise this may be di�cult. To obtain a clear power level of the noise
�oor, there are two solutions:

• FFT averaging: average multiple FFTs (linear scaled power spectrum) to reduce the random-
ness of the noise �oor (see Fig. 3.5)

• Bin averaging: average the bins of the linear scaled power spectrum of a single FFT (exclude
bins representing DC and other unwanted components), as described in the next section
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4.2.2 Summing of FFT bins (arbitrary noise and wideband signals)

Summing of FFT bins is an elegant way to measure the power of all kind of noise or broadband
signals. Instead of determining the noise �oor by means described above, frequency bins (FFT (i),
power spectrum) of interest that contain signal components to be measured, are simply summed.
Note, that the summation has to be done using linear values (not dBs) and that no correction of
processing gain is required, since it is inherently considered by the summation process.

Ptrue[dBm] = 10 · log10

(∑
i

FFT (i)[linear]

)
+ CPG[dB] − ENBWcorr[dB]

The advantage of this method is, that the bins that contribute to the measurement, and therefore
the spectral components, can be chosen freely, which allows for very �exible measurements.

4.3 Example

Fig. 4.1 shows a typical FFT measurement of a sine signal plus white noise. A hann window
has been used, so the displayed powers are not the true ones. The displayed power of the sine
signal can be read out: Pdispl = 5.9 dBm. Using Eq. 4.1 the true power of the sine signal is
Ptrue = 5.9 dBm + 6.0 dB + 0 dB = 11.9 dB (CPG is 6 dB, for the scalloping loss zero has been
assumed since the peak falls nearly exactly on a single bin).

The noise �oor can be evaluated using Eq. 4.2: Ptrue = −18.3dBm+6.0dB+27.1dB−1.8dBm =
13.0 dBm. (CPG is again 6 dB, processing gain for a 1024 point FFT is 27.1 dB, correction factor
for ENBW is approx. −1.8 dB)

To compare: the test signal of Fig. 4.1 has been synthesized from a 11.94 dBm sine signal plus
a 13.02 dBm noise signal.

0 2 4 6 8 10 12

x 10
7

−25

−20

−15

−10

−5

0

5

10
1024 point FFT (averaged over 1000 FFTs), window: hann, noisy sine signal

Frequency [Hz]

P
ow

er
 [d

B
m

]

P
displ

 = 5.9 dBm

P
floor

 = −18.3 dBm

Fig. 4.1: FFT of a typical measurement: for the sine 5.9 dBm is displayed, the true value is 11.9
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Appendix

A RMS and power in the time domain

Power or the RMS of an arbitrary digital signal can be easily calculated in the time domain.
However, in contrast to measurements based on FFT analysis separation between di�erent signal
components in the frequency domain is di�cult. For a time domain voltage signal s RMS equals
the standard deviation, power equals the variance.

Vrms = σ(s)

P = var(s) = σ2(s) = V 2
rms (A.1)

If the signal represents a voltage over a speci�c resistor R (e.g. 50 Ohms) the absolute power
in dBm can be calculated:

P [dBm] = 10 · log10
(

var(s)

R · 1mW

)
= 10 · log10

(
σ2(s)

R · 1mW

)




