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ABSTRACT

This paper propeses a method of studying and modeling the dielectric absorption in capac-
itors, Because of dielectric absorption, the valtage on a charged capacitor partially recovers
after momendtarily shorting its terminals, The magnitude of this voltage recovery depends
mainly an the dielectric material. Dielectric absorption causes ertors in some analog applica-
tions based on charging and discharging of capacitors, such as sample-and-hold circuits, inte-
grators and active filters, Designing compensation circuits based on models of the dielectsic
absorption can reduce these errors, This paper presents an analytical method to build a math-
ematical model of the dieleciric absorption, and an equivalent electrical circuit, The method
is based on compartmental analysis theary, mostly used in medicine and biology to study the

kinetics of substances in biological systems.

1 INTRODUCTION

IELECTRIC absorption can be observed by momentarily shorting
Dthe terminals of a charged capacitor. Starting at 0 V, the volt-
age on the capacitor rises slowly. The momentary short cirevit dis-
charged the conductive plates of the capacitor but some encrgy stiil re-
mained stored in the dielectric, This energy recharged the conductive
plates, causing the voltage increase. Dielectric absorption causes errors
in applications based on charging and discharging of capacitors, such
as sample-and-hold circuits, integrators and active filters. Designing
compensation circuits based on models of the diclectric absorption can
minimize these errors. Diclectric absorption, also called ‘soakage’ [1],
has been known and studied for more than one hundred years [2], The
studies were focused on physical explanation and modeling. The ba-
sic model of the dielectric absorption consists of resistor-capacitor time
constants connected in parallel with the main capacitor [1], as shown
in Figure 1. The number of time constants and the values of the resis-
tors and capacitors are empirically determined by measuring different
experimental circuits,

This paper presents an analytic method to build a mathematical
model of the dielectric absorption. Based on this model, the paper
shows how fo determine the number of RC cells and to calculate the
values of the resistors and capacitors {or a circuit of the type shown in
Figure 1. The method is based on the compartmental analysis theory,
mostly used in medicine and biology, to study the kinetics of substances
in biological systems. The compartmental analysis divides a system in
virtual compartments with specific storage capacities and with expo-
nential transfer rate functions. The behavior of the whole system is
described by mathematical equations, formed of terms corresponding
te each compartment.
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Figure 1. The basic model of the diclectric absorption in capacitors con-
sisting of resislor-capacitor time constants f21, C'1, Ra, Cg, connected in
paralel with the main capacitor C'.

2 DESCRIPTION OF THE
ANALYSIS METHOD

The proposed analysis method is based on the measurement of the
recovery voltage ona fully charged capacifor after momentarily short-
ing its terminals. A capacitor consists of two conductive plajes sepa-
rated by a dielectric materizl, as shown in Figure 2(a), When connected
to 2 voltage source, one conductive plate charges positively and the
other one negatively. The capacitor remaing charged after being dis-
connected from the voltage source, and can be dischatged by shorting
its terminals. The voltage on the capacitor {s proportional to the amount
of charge on the conductive plates, Because of dielectric absorption, the
voltage on the capacitor partially recovers after momentarily shorting
its terminals. The magnitude of this recovery is lower if the short is
maintained for a longer fime. Thus, encrgy still remains in the capaci-
tor after a momentary short. To fully discharge the capacitor, the short
needs to be maintained for a long time. This effoct of the diclectric ab-
sorption can be madeled by adding an energy absorption element in
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parallel with the conductive plates, as shown in Figure 2{b). The elec-
tric current charges and discharges the energy absorption element at
slow rates. Because of these slow rates, a momentary short discharges
only partially the cneigy absorption element.

Fig. 2a Fig. 2b
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Figure 2. (a} The capacitor is made of two conduciive plates; o and b,
separated by a dielectric material ¢. {b) The dielectric can be modeled as
an ideal material ¢ in parallel with an energy absorption clement d.
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Figure 3. The concept of the recovery voltage measurement, The ca-
pacitor is represented by two conductive plates o, separated by an ideal
dielectric b and connected in parallel with the cnorgy absorption elerent
e. The switch X can short the capacitor terminals, and the voltmeter V
measures the voltage on the capacitor

The recovery voltage is measured with a voltmeter connected in pat-
allel with the capacitor, as shown in Figure 3. Tt is assumed that the
capacitor is fully charged and the resistance of the discharging path
through the switch Kis 0 (2. If the switch X is momentarily turned ‘on’
for a time ideally 2qual to zero, the conductive plates will discharge
completely while the amount of charge stored in the absorption element
will remain unchanged. This charge transters to the conductive plates
at a slow 1ate, causing the voltage increase. The voltmeter V measures
and records this voltage increase as a function (¢). The recording pe-
riod is assumed to [ast until the charge transfer ends. Censidering an
infinite impedance of the voltmeter, no current flows outside the capac-
itor to the voltmefer. Thus, v(¢) represents the voltage variation on the
capacitor while being charged with an internal current i{t), as shown
in Figure 3. This internal current is assumed to flow from the energy
absorption element to the conductive plates, and is calculated using
Equation (1)
| i) =05 9
where C'is the capacitance and » the recovery voltage. The curtent 4(¢)
is decomposed into a sum of exponential decay tevms. Fach term rep-
tesents the current coming from @ virtual compartment of the energy
absorption element. Thus, the energy absorption element is divided
in compartments characterized by energy storage capacitors and ex-
ponential transfer functions, similar to adding multiple or distributed
relaxation times in dielectric theory. The capacitance and time constant
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of each circuit are caleulated from the i {¢) decomposition terms. Based
on the caleulated values, a mathematical model of the dielectric ab-
gorption is built, From the mathematical model it {s then shown how to
calculate the elements of an electrical circuit model of the type shown
in Figure 1.

3 MEASUREMENT SETUP AND
DATA RECORDING

The experiment meastres and records the recovery voltage on the ca-
pacitor after momentarily shorting its terminals. The experiment sefup
consists of a vollage source U, a voltmeter V, two switches Ky and Ky,
and the capacitor to be modeled C, as shown in Figure 4. The capacitor
Cis charged at a voltage U with X, closed and K open. Then, K opens
and K; momentarily closes shorting the capacitor terminals. After the
momentary short eircuit, the voltage rises slowly starting from 0 V, as
shown in Figure 5. The recovery voltage is recorded in uniformly timed
samples as a series w( 7"}, w(27), w(3T), ... w(nI").
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Figure 4. Schematic diagram of the circuit used to measure the recovery
voltage on the capacitor.
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Figure 5. The rccovery voltage on the capacitor after momentarily
shorting its terminals. The level (a) represents injtial charging voltage, (b)
represents the momentary short, and (e} represents the voltage variation
on the capacitor after the short was removed,

Comparing this setup with the ideal case presented in the previous
Scction, the impedance of the voltmeter is no longer infinite and the
resistance of the shorting path through X is no longet equal to zerc.
These differences cause errors in the measured values of the recovery
voltage, To minimize the errors the following aspects need to be con-
sidered.

The input impedance of the voltmeter needs to be very high to min-
imize the eurrent flowing outside the capacitor. The caleulation of the
recovery current assumes that current flows only from the energy ab-
sorption element to the conductive plates and not outside the capacitor,
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Alse, the resistance of the shorting path needs to be very low so that
the conductive plates will fully discharge during the womentary short.

The capacitor needs to be charged for a long time so that the diclec-
tric, which has a longer time constant, will absorb energy close to its
full capacity. Because the time constant of the dielectric is not known at
the beginning of the axperiment, an arbitrary charging period should
be used. To verify that the capacitor was fully charged, the experiment
needs to be repeated using a longer chazging period. Thus, two models
are built for two different charging periads. If the capacitor was fully
charged the two models would be identical.

The recovery voltage should be recorded for enough time to cover
the lengest time constant of the dielectric. Because the longest time
constant is not known at the beginning of the experiment, an arbitrary
recording period should be used. To verify that the recording petiod
was enough long, the experiment needs to be repeated using a longer
recording period. Thus, two models are built for the two recording pe-
riods. [f the periods are long enough, the two models will be identical.

4 DATA PROCESSING AND
MATHEMATICAL MODEL
CONSTRUCTION

The recovery voltage w(2) was recorded as a serigs w{1'), u{21),
u(37"), ... w{nT), measured with a sampling period 7", The internal
current (£} that recharged the conductive plates is calculated as a se-
ties (), 4 (2T, 4(37"), . . ., i{{n — 1)T), using the discrete form of
Equation (1)

) A+ 1)T] - ulki)
i{kT) = O_I_—‘ o)
E=1,23,...(n-1)

where C is the capacitance, 1.{%1") the recovery voltage samples, n the
number of samples, and 7' is the sampling period. The series i(&17)
represents the variation of the current (¢) fowing from the cnergy
absorption element to the conductive plates, This current decreases
continuously with time and approaches zero corresponding to an equi-
librium in the charge transfer, Therefore, (%) can be represented as a
sum of exponential decay currents coming from virtual compartments
of the energy absorption element. Each compartment is characterized
by storage capacitance and time constant. It is alse assumed that the in-
dividual carrents flow only into the conductive plates and not between
compartments. Fach individual current is described by an equation of
the form -

ijy = Iy exp {— f—} (3)

)

where I; is the value of the current coming from the compartment j

attime t = 0, and 7 is the respective time constant. The recharging
current (£} is the sum of all individual currents

ity = 2 tesp |1 @
=1 ’

where 7 15 the number of compartments. Considering that the ca-
pacitances and time constants arc different for each compartment, the
recharging currents i;{¢) will end successively with time during the
recording period. Therefore, it can be assumed that the last section of
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the (&7 ") series represents the current coming from a single compart-
ment. This current decreases exponentially and can be represented on a
semi-logarithmic graph paper as a straight line. Thus, representing the
(KT} points on a semi-logarithmic graph paper, there is a set of points
at the end of the graph that can be approximated with a straight line.
Therefore, the asymptotic tangent to the end of the graph represents
the current coming from the last compartment. This current decreases
exponentially and is deseribed by Equation (3). The parameters Z; and
7; of Equation (3) are calculated from the slope and the intercept of the
asymptotic tangent.

0 60 120 180
Tima {8}

Figure 6. Semi-logarithmic plot showing expenential decay functions
as straight lines. The line corresponding to the current coming from a
single compartment (b) is subtracted from the curve representing the total
current (a). The resulting curve {c) represents the discharging current from
the rest of compartmenls,
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Figure 7. Schematic diagram showing the discharging of capacitor €
into 7 through the resistor R;.

By subtracting the asymptotic tangent from the i(kT") graph, a new
curve results, representing the cunrent coming (rom the rest of the
compartments, as shown in Figure 6. This curve is processed in the
same way, considering that the last points represent the current coming
from another single compartment. Thus, continuing this algorithm, one
straight line corresponding to a single compartment results with each
step. This iterative process ends when the curve resulting from the
subtraction can be approximated with a straight line, meaning that it
represents the current coming from the fastest compartment. Thus, the
#(&") graph was decomposed into a sum of straight lines representing
individual currents coming from virtual compartments. The number
of compattments is equal to the number of straight lines. Because the
currents £ start flowing out of compartments when the shott is ap-
plied, the I; terms represent the values of the currents flowing after the
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shorting period. Thus J; can be replaced with
tSC
Ij = Ij[] exXp [_T_] (5)

3
where ;o is the current flowing from compartment j at the moment
the momentary short is applicd, £, the shorting petiod, and 7 is the
time constant of compartment 7. By replacing J; in Equation (4), the
recovery current is described by Equation (6)

: .- tse :
it) =" Lnexp [— T—} exp [_E
The recovery voltage is calculated as

u(t) = %‘/?ﬁ(t) dt
= ‘éé% exp {ﬁ%} 74 (1 — oxp [— TLD 9

M 7

The parameter I;q is the initial value of the current corresponding
to the virtual compartment j. Experimental results show that the I,
value is proportional with the charging voltage while the 7; time con-
-stant is fixed. Thus, the parameter ;o can be expressed as the charging
voltage I over a constant R
U
Iin=— 8
in R;j ( )
The I constant is a resistance because it is defined as a voltage over
a current. By replacing 1,0 in Equation (7), the recovery voltage can be
expressed as

=g S () o

where U s the charging voltage, C the capacitance, ¢, the momentary
shorting period, 7; the fime constant and R; is the resistance of com-
partment . After the parameters 1; and 7; are calculated for a par-
ticular charging voitage U/, Equation (9) can be generalized to desctibe
the recovery voltage for any charging voltage. Thus, after a capacitor
is discharged from a voltage V4 to Vo where it is held for a period of
time 5, the voltage acrass its terminals rises following the equation

tac
Ve - Vi) - ‘rfe"l’[—w]( [ LD
= E 1—exp|——
i

) =5 R,
{10)

7=1
where Vo — V4] is the absclute value of the voltage change on the
capacitor. The hold time #y, is the equivalent of the momentary short.
Similarly, after a capacitor is charged from a voltage V4 fo ¥4 where it
is held for a period of time £, the voltage across its terminals decreases
following the equation

m . _EEE
V2 — W TJQXP[ ’”}( { t} )
u(t) = exp|——| -1
() & ; Hj 'Tj

(1)
Equations {10) and (11} represent the mathematical model of the voltage
variation on a capacitor due fo dielectric absorption. The parameters
R; and 7; characterize each virtual compartment and m is the number
of compartments. Based on the mathematical model, specific equations
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can be written for different charging and discharging patterns used in
particular applications. The only constraint is the initial state of the
capacitor which should be considered either fully charged or fully dis-
charged.
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Figure 8. Semi-logarithmic plot showing the decomposition of the di-
clectric discharging current (a) in straight lines {b), {c}, {d}, (e), correspend-
ing to exponential decay currents coming from four virtual compartments,

The equivalent circuit was built using the procedure described in
Section (8}, and is shown in Figure 9.

R1 R2 R3 R4
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Figure 9. The equivalent electrical circuit of a 10 pF Z5U type ceramic
capacitor.
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Figure 10. The mathematical mode! result {a) compared with the mea-
sured recovery volfage (b) during the data recording experiment.

5 THE EQUIVALENT
ELECTRICAL CIRCUIT

The electrical circuit model is based on the similarity between the
terms of Equation (4) and the discharging current of a capacitor through
aresistor. To emphasize this similarity, consider a capacitance ; which
discharges through a resistor R; into a capacitor €7, as shown in Fig-
ure 7, The initial voltage on the capacitor C is 0 V and on £ is U; V.
Current starts flowing through the resistor B charging the capacitor
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Figure 11, PSPICE simulation of the recovery voltage using the equiva-
lent electrical eireuit (a) compared with the measured recovery voltage (b)
during the data recording experiment.

ult) =

(15)

€' with energy stored in ;. This charging process ends when the volt-
age on capacitor €' equals that on ', The voltage variation on (' is
described by the equation

U;G; t

ool - reeeTal) @
Thus, the current i{t) cam be caleulated as

vy d’l‘,b Uj i

W) =Cg g, ™ [ meonc o) P
Equation (13} has the same form as the terms in Fquation (4), Thus,
the circuit shown in Figure 7 can be used to model the discharging
current from 2 single compartment, represented by f1; and €, into
the conductive plates represented by C', From the equivalence between
Equation {13} and the terms in Equation (4), £i; and C';, are cateulated
as

Uexp [ e 1
R;= Pl (14)

J
Ory
TRC -

The electrical citcuit mode! contains the same number of compart-
ments as the mathematical model. Each compartment consists of a se-
tios resistor-apacitor circuit, and all compattments are connected in
paralle! with the main capacitor. This equivalent circuit is similar to
the one shown in Figure 1, where 'is the capacitor value, 7 the nuem-
ber of compartments, and C; and R;, withj = 1, 2,3, .. m, are the
capacitance and resistance corresponding to cach compattment,

Therc is a limitation of the equivalent circuit model. This limitation is
caused by the current flowing between compartments. The equivalent
circuit model is based on the mathematical medel, and the mathemati-
cal model assumes that the current flows only from compartments into
the conductive plates not between compartments, In the equivalent
circuit model the first compartment that discharges will then recharge
with current coming from the rest of the compartments. This recharge
causes errors and limits the usage of the equivalent electric cirenit to
a timing less or equal to the discharging period of the fastest compart-
ment. However, this period is much longer than the timing used in most
analog applications. Thus, for these applications, the electrical model
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aceurately represents the real capacitor, and it can be used to design
campensation circuits.

6 ERROR ANALYSIS

The crrors affecting the comparfmental analysis of the dielectric ab-
sorption arc due to the experimental data recording and the graphical
curve fitting method. The data recording crrors ate caused by the in-
put bias cutrent into the voltmeter, the accuracy of the measured val-
ues, and the aceuracy of the sampling period. The input bias current
is subtracted from the recovery current during the experimental data
recording, Thus, less curtent will recharge the conductive plates caus-
ing errors in the measured values. The accuracy of the voltmeter and
the sampling period affects the measured values and the calculation
of the recovery current. The curve fitting method adds eerors due to
the tangent drawing and the slope and intercept calculation, A good
undetstanding of these errors help in setting up the experiment and
building a more accurate model,

7 EXPERIMENTAL RESULTS

This Section presents a study done on a 10 uF Z5U type ceramic
capacitor. The circuit presented in Figure 4 was used to charge the ca-
pacitor for 1 hand discharge it for 3 5. The voltage on the capacitor was
measured using a volimeter with 10 pA maximum input bias current
and 0.1 mV accuracy. The data was recorded with a 1 s sampling rate
for a period of 1 h. The recovery current was calculated using Equa-
tion {2) and was plotted on semi-logarithmic graph paper. The curve
decomposition into straight lines followed the procedure deseribed in
Section 4 and the result is shown in Figure 8 It can be observed that
the decomposition of the curve contains four straight lines. Only the
first six minutes of recording petiod are shown fo emphasize the sec-
tion were the last three straight lines ave located {lines ¢, d and e). The
model consists of four compartments corresponding to each straight
line. The discharging model was caleulated following the procedure
presented in Section 4 and is described by

’U('-f) — AV[l(]Eie_"'““"“"(l - e—U.:}l'IM)
+ 426—0.U226h (1 _ 8—0.022'5)
1 31008 (1- e—a.oaz)
4 378—0,33:31.3,(1 . G~0.333:)}
whete (i) (in mV) is the voltage increase on the capacitor after a AV

discharge and a £;, hold time of the final voltage value. The charging
model is

(16)

u(t) = AV[106e=0-005 (=003 _ 1)
o 49 0022, (8—0,022; —y

E SIC—U.OSLR(C-—U.HBI _ 1}

+ 378—0,33&;,(8—0.3:13: ~ 1))

The mathematical and clectrical cireuit models were evaluated us-
ing the experiment setup shown in Figure 4, The measurcd and cal-
culated voltage variations on the capacitor arc presented in Figure 10,
The equivalent circuit was evaluated using PSPICE [5] simulation. The
measuted and simufated data are shown in Figure 11. It can be ob-
served that the error increases after the first compartment is discharged
and current starts to flow between compartments.

(17)
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8 CONCLUSIONS

1115 paper presents a genetal method of studying the dielectric ab-
Tsorpt_icm in capacitors and building mathematical and electrical
cireuit models. The method is based on experimental data recording,
and analysis combining mathematical, graphical and statistical tech-
niques, The accuracy of the medels depend on both experimental and
data processing factors. The electrical circuit model has a timing limi-
tation period related to the fastest time constant of compartments, after
which the errors start to increase. However, the period of high accuracy
is enough long compared to the timing used in most applications, and
the electrical circuit model can be used with good results. The method
prescnted in this paper can be used to study and model any type and
value of capacitor, at slow or fast charging and discharging rates.
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