Most of us volt or ohm nuts have surplus standard resistors sitting on the book shelf. Old resistors settled over the decades can be extremely stable, less than 1 ppm/year is not exceptional (but to be honest there are a lot of bad ones too). However the temperature coefficient is relatively high, 10-20 ppm per degree typical. It means that the normal variations of the room temperature increase the uncertainty to a magnitude worse than the long term stability making the resistors more or less useless for accurate work.
The resistor manufacturers could have optimised the tempco by carefull wire selection or using wires of opposite behaviour. But the low tempco was not the primary design parameter, because the resistors were going to be used in a temperature stabilised oil bath anyway. The benefit would have been minimal and required a lot of extra work.
From the ohm nut point of view this is a real problem, because metrology grade oil baths are not easily available. Occationally you can find surplus units for a low price, but we are talking about instruments of a bath tub size, with freon filled refridgerator engine and remarkably high power consumption. And everyone ever worked with precision baths know that they develop faults very often, even the modern ones.
There are plenty of small water baths available, but circulating system doesn't work with oil and even if it does there is a risk of fire. And the temperature stability and uniformity of these units is usually very poor.
Many good reasons for designing and building my own version. And to start this thread for collecting information about the subject.
It is not going to be an easy project because expertise from a number of areas is required. Not only elecronics but also control systems, thermal design and fluid mechanics, just to mention a few. But as usual, easily covered by the members of this community. And I wouldn't be surprised if someone here has already built something similar.