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In recognition of the balance between collision forces and electrical forces, the
forces of (4) are replaced by |¢4+|E and —|q_|E, respectively.

Py=Nilgi|E-vy —N_[g-|E-v_ (5)

If, in turn, the velocities are written as the products of the respective mobilities
and the macroscopic electric field, (7.1.3), it follows that

Py = (Ntlg+lps + N-|g-|p-)E-E = oE - E (6)

where the definition of the conductivity o (7.1.7) has been used.
The power dissipation density P; = oE - E (watts/m?%) represents a rate of
energy loss from the electromagnetic system to the thermal system.

Example 11.3.1. The Poynting Vector of a Stationary Current Distribution

In Example 7.5.2, we studied the electric fields in and around a circular cylindrical
conductor fed by a battery in parallel with a disk-shaped conductor. Here we deter-
mine the Poynting vector field and explore its spatial relationship to the dissipation
density.

First, within the circular cylindrical conductor [region (b) in Fig. 11.3.1], the
electric field was found to be uniform, (7.5.7),

E' = i, (M)

while in the surrounding free space region, it was [from (7.5.11)]

v

B = " Lin(a/b)

[;ir + ln(r/a)iz] (8)

and in the disk-shaped conductor [from (7.5.9)]

c v 1,
B = e ©)

By symmetry, the magnetic field intensity is ¢ directed. The ¢ component
of H is most easily evaluated from the integral form of Ampere’s law. The current
density in the circular conductor follows from (7) as J, = ov/L. Then,

2nrHy = Jomr? — Hg = J;r; r<b (10)
2 a Job2
2nrHy = Jomb” — Hy = e b<r<a (11)

The magnetic field distribution in the disk conductor is also deduced from
Ampere’s law. In this region, it is easiest to evaluate the r component of Ampere’s
differential law with the current density J° = ocE°¢, with E® given by (9). Integra-
tion of this partial differential equation on z then gives a linear function of z plus
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Fig. 11.3.1 Distribution of Poynting flux in coaxial resistors and asso-
ciated free space. The configuration is the same as for Example 7.5.2. A
source to the left supplies current to disk-shaped and circular cylindri-
cal resistive materials. The outer and right-end conductors are perfectly
conducting. Note that there is a Poynting flux in the free space interior
region even when the currents are stationary.

an “integration constant” that is a function of r. The latter is determined by the

requirement that Hg be continuous at z = —L.
£ p— E(L-l—z)—f—.]ﬁ' b<r<a (12)
7 Tin(a/b) r °or’

It follows from these last four equations that the Poynting vector inside the
circular cylindrical conductor, in the surrounding space, and in the disk-shaped
electrode is

b Vo,
S’ = 7 i (13)
vb?J, z T
a_ __ YJo 7.z_ *.r 14
S ln(a/b)QrL(rl lnal) (14)
_ 2 2
S Bl AP G/ (15)

In2(a/b) 2 In(a/b) 2r2 =

This distribution of S is sketched in Fig. 11.3.1. Wherever there is a dissipation
density, there must be a negative divergence of S. Thus, in the conductors, the S
lines terminate in the volume. In the free space region (a), S is solenoidal. Even with
the fields perfectly stationary in time, the power is seen to flow through the open
space to be absorbed in the volume where the dissipation takes place. The integral
of the Poynting vector over the surface surrounding the inner conductor gives what
we would expect either from the circuit point of view

—]{E xH-da= (2wa)(%) (";b) = o(nb*J,) = vi (16)

where 7 is the total current through the cylinder, or from an evaluation of the right-
hand side of the integral conservation law.

/. oE - Edv = (71'b2[/)rr(%)2 = ’U(Tl'bzd%) =i (17)
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An Alternative Conservation Theorem for Electroquasistatic Systems. In
describing electroquasistatic systems, it is inconvenient to require that the magnetic
field intensity be evaluated. We consider now an alternative conservation theorem
that is specialized to EQS systems. We will find an alternative expression for S
that does not involve H. In the process of finding an alternative distribution of S,
we illustrate the danger of ascribing meaning to S evaluated at a point, rather than
integrated over a closed surface.

In the EQS approximation, E is irrotational. Thus,

E=-Vo (18)

and the power input term on the left in the integral conservation law, (11.1.1), can
be expressed as

—fExH-da:?{V‘I)dea (19)
s s
Next, the vector identity

Vx(PH)=V® x H+ ®V x H (20)

is used to write the right-hand side of (19) as

—fEwala:fV><(<I>H)~da—]{<I>V><H-da (21)
5 5 5

The first integral on the right is zero because the curl of a vector is divergence free
and a field with no divergence has zero flux through a closed surface. Ampere’s law
can be used to eliminate curl H from the second.

—j{ExH-da:—?{¢(J+3—D)~da (22)

In this way, we have determined an alternative expression for S, wvalid only in the
electroquasistatic approrimation.

oD
S=e(J+ )

(23)

The density of power flow, expressed by (23) as the product of a potential and total
current density consisting of the sum of the conduction and displacement current
densities, has a form similar to that used in circuit theory.

The power flux density of (23) is convenient in describing EQS systems, where
the effects of magnetic induction are not significant. To be consistent with the EQS
approximation, the conservation law must be used with the magnetic energy density
neglected.

Example 11.3.2. Alternative EQS Power Flux Density for Stationary
Current Distribution
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Fig. 11.3.2 Distribution of electroquasistatic flux density for the same sys-
tem as shown in Fig. 11.3.1.

—
)

<?

Fig. 11.3.3 Arbitrary EQS system accessed through terminal pairs.

To contrast the alternative EQS power flow density with the Poynting flux density,
consider again the coaxial resistor configuration of Example 11.3.1. Because the
fields are stationary, the EQS power flux density is

S=2aJ (24)

By contrast with the Poynting flux density, this vector field is zero in the free space
region. In the circular cylindrical conductor, the potential and current density are
[(7.5.6) and (7.5.7)]

z;  J'=0E’ =i, (25)

S=-——-zi, (26)

There is a similar, radially directed flux density in the disk-shaped resistor.
The alternative distribution of S, shown in Fig. 11.3.2, is clearly very different
from that shown in Fig. 11.3.1 for the Poynting flux density.

Poynting Power Density Related to Circuit Power Input. Suppose that the
surface S described by the conservation theorem encloses a system that is accessed
through terminal pairs, as shown in Fig. 11.3.3. Under what circumstances is the
integral of S - da over S equivalent to summing the voltage-current product of the
terminals of the wires connected to the system?



