@berni Ah, perfect. Ok so my point is this, you've modeled the circuit with lumped elements and that gives something that looks correct, but if you set this experiment up in real life, do you really think you'll measure any significant voltage across any of L2, L3, L4 or L5 like spice would tell you is there? The coupled flux isn't confined in those points so you won't. This is where our "modified" KVL breaks down.
We saw Mehdi struggle with this in his first video. This is one of the biggest points of confusion, that there must be "voltage in the wire". I don't remember who, bsfeechannel?, was earlier arguing that this can't be modeled 100% correctly in spice because spice only knows about lumped elements. No matter how many inductors you split the mutual inductance into in spice, it will give an incorrect answer if you use it try to use it to measure a voltage along the wire. The reason is that in the actual experiment, there aren't any lumped inductors, the linked flux in the secondary is not confined to any specific two terminals.
Also, I'd argue that the leads should not be modeled as mutual inductance as they aren't supposed to link any of the flux in the center loop. (This is how Romer defines the experiment).
p.s. I'm not going to be bothering to respond to others that aren't attempting to have a productive conversation
[edit: clarify who I'm talking to since a few posts happened in the interim]