Anyone looking at a TO-220 stuck to a heatsink of that size could have figured that out.
It did seem a little odd to me as well.
I disagree. This TO220 package is rated at 300W, and if you are dissipating 100W, there is only a 50 degC junction to case temperature - that is very manageable. The maximum operation junction temperature is 150 degC and to meet that at 100W dissipation, all you have to do is to keep the heatsink below 100 deg C. I am sure they manage that.
There are two obvious concerns.
First, even though it has a proper DC Safe Operating Area spec, it makes me very nervous. With a low gate voltage and a low channel resistance, the trenchFET cells will be very susceptible to thermal runaway in the linear mode. Vishay make the same device (SUP80N15), and their data sheet says it is optimized for PWM use. It is still designed mainly for switching. Here is the problem - even if the device can meet the SOA spec 100%, if there is a combination of events that can cause some cells to start conducting more then other cells, then thermal runaway can start anyway. It is possible to design MOSFETS that are immune to thermal runaway but the 80N15 is not anywhere near that class.
When you look at the data sheet more closely, the device is rated for DC at up to about 6.5A at 40V - but at a 25 degC case temperature. There is no spec for SOA at a 90 degC case temperature but given the fact the cells are susceptible to thermal runaway, the SOA has to be degraded. How much can we expect it to degrade by? If we look at a MOSFET that is properly specified for linear use like the IXYS IXTK46N50L, it can do 7A at 100V (25degC). At 90degC case temperature, it drops down to 3A at 100V. The IXYS is designed with a much lower risk of thermal runaway - well over 20x the resistance in relation to the die size and a 50% higher gate threshold, so my guess is that realistically, the 80N15 drops to no more then 1A DC SOA at 90 degC case temperature. I cannot imaging the 80N15 actually being capable of 3A in linear mode at 90 deg C case temperature at about 38-40V.
Secondly, they clearly added two extra protection diodes, and that indicates that they have been having problems. It is a big clue to issues they have been having. Sometimes when you start adding diodes to fix one problem, you can make new problems.
Can you just change the MOSFET? The problem there is that it is very hard stabilizing the feedback loop of power supplies, and the power MOSFET characteristics are a major element in the feedback loop. You might fluke it, but in all probability, you will end up with a sometimes-unstable power supply.