Dedicated log amps like the LOG114 and AD's ADL5303/5304 use trimmed internal thermal compensation.
Despite having the Eval boards for all of these devices, it was a bit of an uphill struggle to get them to work in the way I wanted, because they're really designed for photo diode applications. The TI LOG114 offered the path of least resistance in the end. It was surprisingly easy to get 100pA resolution in my own design. Because of the logarithmic nature of the device, if you're OK with nearly 3 sig figs of resolution across the range, you can make do with an MCU's 12 bit ADC. From grim experience, this is much easier than trying to get decent readings out of a 24 bit ADC, which will be much slower, and require averaging and oversampling.
You have to remember that you need to have a means of combining the log amp with a power supply of some sort. In its simplest form, you can use the on chip reference, but I used the MCU's DAC output with a bipolar voltage follower. In retrospect, bearing in mind it's only a few mA, you could use an op amp as a buffer, but keep in mind the limitations of any capacitive loading.
If you have a scope with a math exp function you can usefully probe the log amp's output (DS1000Z even has it), pretty darned useful for my use case which is button cell powered MCU based devices.
The biggest problem as a practical device for my use case is the weak floating ground which becomes a problem when you start going over a couple of mA, a real problem if you have inrush current or activity spikes because effectively your DUT's power supply voltage lags badly.
I've gone back to using 24 bits ADCs and some of the newer low offset current sense amps for current measurement for now, but practically speaking I'm finding it difficult to achieve much beyond 5.5 decades with an acceptable update rate, but it's a work in progress.