Here is the nodal admittance matrix (assuming I did not screw up ).
Confirmed this result with Symbolic Spice.
Here is the SSPICE output for Vout/Vin [V4/V1]. I have further confirmed the approximation for the numerator but have not tackled the denominator.
[0 ] [GMM1 sCM1+sC1+G1 0 -sCM1 ][V1 ]
[0 ]=[0 -GMM2 sCM2+sC2+G2 -sCM2 ][V2 ]
[0 ] [0 -sCM1 -sCM2+GMM3 +sCM2+sCM1+sC3+G3 ][V3 ]
[1 ] [1 0 0 0 ][V4 ]
*nested miller
Numerator of: v4/v1
TERMS SORTED ACCORDING TO POWERS OF s
s**2 terms:
+ sCM2*sCM1*GMM1 + sCM1*sC2*GMM1
s**1 terms:
+ sCM2*GMM2*GMM1 + sCM1*GMM1*G2
s**0 terms:
- GMM3*GMM2*GMM1
TERMS SORTED ACCORDING TO POWERS OF S
S**0 terms:
+ sCM2*sCM1*GMM1 + sCM2*GMM2*GMM1 + sCM1*sC2*GMM1
+ sCM1*GMM1*G2 - GMM3*GMM2*GMM1
************************************************
Denominator of: v4/v1
TERMS SORTED ACCORDING TO POWERS OF s
s**3 terms:
- sCM2*sCM1*sC3 - sCM2*sCM1*sC2 - sCM2*sCM1*sC1
- sCM2*sC3*sC1 - sCM2*sC2*sC1 - sCM1*sC3*sC2 - sCM1*sC2*sC1
- sC3*sC2*sC1
s**2 terms:
- sCM2*sCM1*GMM3 + sCM2*sCM1*GMM2 - sCM2*sCM1*G3
- sCM2*sCM1*G2 - sCM2*sCM1*G1 - sCM2*sC3*G1 - sCM2*sC2*G1
- sCM2*sC1*GMM3 - sCM2*sC1*G3 - sCM2*sC1*G2 - sCM1*sC3*G2
- sCM1*sC2*G3 - sCM1*sC2*G1 - sCM1*sC1*G2 - sC3*sC2*G1
- sC3*sC1*G2 - sC2*sC1*G3
s**1 terms:
- sCM2*GMM3*G1 - sCM2*G3*G1 - sCM2*G2*G1 - sCM1*GMM3*GMM2
- sCM1*G3*G2 - sCM1*G2*G1 - sC3*G2*G1 - sC2*G3*G1
- sC1*G3*G2
s**0 terms:
- G3*G2*G1